Lycée Les 3 SOURCEs Bourg-Les-Valence

NSI T!¢ — Théme 3 Année 2025-26
Gestion des processus

Exécution d’un programme sur un processeur

Nous avons vu 'année derniere que pour qu’un programme s’exécute sur le processeur, il

devait étre traduit (par un compilateur ou un interpréteur) en langage machine. Au début

de I’exécution du programme, les instructions sont copiées en mémoire. Parmi les registres

du processeur, il y en a 2 qui ont un role spécial : IR contient I'instruction courante et IP

I’adresse de la prochaine. L'exécution d’une instruction se passe de la maniére suivante:

1) le contenu de la mémoire vive a I’adresse pointée par IP est copiée dans IR;

2) l'instruction contenue dans IR est décodée, ce qui active le circuit électrique qui réalise
l'opération visée ;

3) l'instruction décodée est exécutée et IP est mis a jour.

On continue ainsi jusqu’a ce que ’exécution se termine.

Sauf que ce fonctionnement correspond a un systeme mono-tache. Le processeur ne peut

rien faire d’autre tant que 'exécution du programme n’est pas arrivée a son terme. Depuis

les années 70, les systemes d’exploitation sont multi-taches et permettent a plusieurs pro-

grammes de s’exécuter en parallele. Mais comment faire cela avec un seul processeur? Et

méme avec les processeurs modernes, comment faire s’il y a plus de programmes que de

coeurs?

Les processus

Un processus est une instance d’un programme en cours d’exécution. Un méme programme
peut étre lancé plusieurs fois et dans ce cas, chaque instance est un processus différent.

Pour l'instant, considérons que le processeur ne possede qu'un seul cceur. Imaginons que
'utilisateur est en train de programmer en Python a I’aide de Thonny et que son programme
actuel met beaucoup de temps avant de se terminer. En attendant, il utilise un navigateur
Internet pour consulter les documentations, le tout en écoutant de la musique stockée sur
son ordinateur. Le processeur doit donc exécuter au moins 3 processus en parallele. Sauf
qu’un seul peut s’exécuter a la fois. Pour donner l'illusion du parallélisme, le processeur
va exécuter successivement quelques instructions de chaque processus avant de passer au

suivant.
Les processus ne sont donc pas constamment en

exécution. En fait, ils peuvent étre dans 3 états:

terminé

» Prét: le processus est prét a étre exécuté.
* Elu: le processus est en cours d’exécution.

* Bloqué: le processus a besoin d’une ressource
pour continuer son exécution.

Pour comprendre 1’état “bloqué”, on peut prendre I'exemple suivant. Lorsqu’on appuie sur

le bouton vert de Thonny, il va sauvegarder le fichier avant de I'exécuter. Il doit donc at-

tendre que le fichier ait été écrit avant de pouvoir passer a la suite. Pour ne pas faire perdre

du temps au processeur, le processus de Thonny passe dans I’état “bloqué”, ce qui I'empéche

d’étre exécuté. Mais comment savoir quand débloquer Thonny?

Les interruptions

Le systeme produit des interruptions (action sur le clavier, disque qui signale la fin d’une
écriture, levée d’une exception...). Lorsque le processeur recoit une interruption, il finit
d’exécuter I'instruction en cours et active le gestionnaire d’interruption.

1/4

Ce dernier va regarder si un processus attendait cette interruption et si c’est le cas, il va le
débloquer.

Pour l'exemple précédent de Thonny, lorsque le disque dur envoie 'interruption signalant
la fin d’écriture, le gestionnaire d’interruption va faire passer Thonny dans I’état “prét”.
Afin d’assurer l'alternance entre les processus, le processeur génere de lui-méme des in-
terruptions, appelées interruptions d’horloge a intervalles réguliers. Pour les processeurs
actuels, c’est de 'ordre de 100 ns. Dans ce cas la, le gestionnaire d’interruption va utiliser
I'ordonnanceur qui va déterminer quel processus exécuter ensuite.

L'ordonnancement

I1 existe plusieurs stratégies possibles pour I'ordonnancement. On peut choisir de passer au
processus le plus prioritaire, au plus rapide, au dernier arrivé, a celui qui attend depuis le
plus longtemps. ..

Linux peut utiliser plusieurs ordonnanceurs, dont un basé sur la stratégie du tourniquet
(round robin). Les processus “préts” sont placés dans une file d’attente. Le premier de la
file est “élu” et exécuté pendant un certain laps de temps, appelé quantum. Si a la fin du
quantum le processus n’a pas terminé son exécution, il est interrompu et on le place a la fin
de la file. On passe alors au processus suivant.

Lorsqu’un processus passe de “bloqué” a “preét”, il est placé a la fin de la file.

Dans la figure ci-contre, on peut voir
3 processus s’exécuter sur un proces-
seur. On prend un quantum comme
unité de mesure. Le processus T; se
retrouve dans l'état “bloqué” a 2,7
parce qu’il attend une ressource, qui
semble étre relachée par T, a la fin de
son exécution. Au total, T} a pris 3,6 Processeur| Ty | To | T3] T [T Ty | T3 [T
unités de temps, T, 1,5 et T5 1,6. 0 1 2 27 3742 52 61 67
Si un processeur possede plusieurs coeurs, il peut exécuter plusieurs processus en méme
temps. Il peut y avoir une unique file pour tous les cceurs ou des files pour chaque cceurs.

T,/ | P |E| B |P|E

T,| |[P| E| P |E

L E| P | E|Pl E|P|E

Changement de contexte

Le processeur passe donc tres réguliérement d’un processus a un autre. Mais pour qu’un
processus puisse continuer son exécution, il faut que les registres aient les mémes valeurs
a la fin de son exécution et a sa reprise. Il faut donc sauvegarder ces valeurs lorsque le
processus est mis en pause.

Le systeme d’exploitation garde en permanence un certain nombre d’informations sur les
processus dans une structure appelée bloc de contréle de processus, ou PCB pour Process
Control Bloc. Ces informations s’appellent le contexte du processus. On y retrouve princi-
palement:

* Le PID (Process ID) qui est un entier qui identifie le processus.
« L’état du processus (élu, prét ou bloqué).

* Une sauvegarde des registres lors de la derniere interruption.
* La plage d’adresses allouée au processus pour son exécution.

* La liste des ressources utilisées: fichiers ouverts, connexions réseaux en cours, périphé-
riques utilisés. ..

Lorsque le processeur passe d’un processus A a un processus B, il doit donc sauvegarder

I’état des registres pour A dans le PCB, charger celui de B et reprendre son exécution. On

dit que c’est un changement de contexte.

Theéme 3 : Gestion des processus 2/4 NSI T

Les threads

Parfois, un programme peut lui méme faire plusieurs taches en méme temps. Par exemple,
un navigateur Internet peut en méme temps lire une vidéo, télécharger un fichier, afficher
une nouvelle page et exécuter du code javascript sur un autre onglet. Pour cela, il peut gé-
nérer plusieurs fils d’exécution, ou threads. Ce sont des sous-processus, ou processus légers.
Ils partagent la méme zone mémoire, alors que deux processus différents ont des zones dif-
férentes. A notre niveau, nous pourrons considérer que ce sont des processus comme les
autres.

L'utilisation de threads permet de faire de la programmation concurrente. L’idée est de dé-
couper le programme en plusieurs sous-programmes qui s’exécutent en parallele. Cela pose
de vrais défis, puisque tous les problémes ne se prettent pas tres bien a ce genre d’approche.
Cela pose aussi des problemes de synchronisation entre les différents threads, ce qui peut
entrainer des blocages.

Les processus en Linux

Pour visualiser les processus s’exécutant sur un ordinateur sous Linux, il faut utiliser la
commande ps. Il existe de trés nombreuses options permettant d’obtenir plus ou moins
d’informations.

Voici un extrait obtenu avec jslinux.

[rootlocalhost root]# ps -efH

UID PID PPID C STIME TTY TIME CMD

root 1 ® 0 14:59 7 00:00:00 /bin/sh /sbin/init

root 41 1 0 14:59 7 00:00:00 dhcpcd

root 45 1 0 14:59 7 00:00:00 /usr/bin/sh /bin/startx

root 64 45 0 15:00 ? 00:00:00 xinit /etc/X11/xinit/xinitrc
root 65 64 7 15:00 ? 00:00:13 /usr/libexec/Xorg :5 -auth
root 91 64 2 15:00 ? 00:00:05 fluxbox

root 113 91 1 15:00 ? 00:00:02 Xterm

root 115 113 0 15:00 pts/0 00:00:00 bash

root 137 115 0 15:03 pts/0 00:00:00 ps -efH

Les colonnes correspondent respectivement a 1'utilisateur du processus, son numeéro, le nu-
meéro de son parent, le pourcentage d’utilisation du processeur, I’heure de départ, le termi-
nal dans lequel il a été lancé (? s’il de provient pas d’un terminal), le temps d’utilisation du
processeur et la commande appelée. On remarque que le premier processus créé est init
qui lance tout le systeme d’exploitation. C’est lui qui lance, entre autres, dhcpcd (pour se
connecter au réseau) et startx (serveur graphique).

L'affichage se fait en une seule fois. Pour avoir une vision en temps réel de 1’état des proces-
sus, on peut utiliser la commande top:

[rootlocalhost root]# top
top - 15:29:56 up 30 min, O users, load average: 0.00, 0.01, 0.02
Tasks: 24 total, 1 running, 23 sleeping, 0 stopped, ® zombie
%Cpu(s): 13.0 us, 21.7 sy, 0.0 ni, 65.2 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 434.1 total, 381.3 free, 27.2 used, 25.6 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 398.3 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
219 root 20 O 8432 3124 2680 R 15.0 0.7 0:00.21 top
1 root 20 O 3136 2516 2148 S 0.0 0.6 0:00.77 init
41 root 20 O 1944 1472 1196 S 0.0 0.3 0:00.04 dhcpcd
65 root 19 -1 106480 22432 7576 S 0.0 5.0 0:15.96 Xorg

Theéme 3 : Gestion des processus 3/4 NSI T

Pour tuer un processus, il faut utiliser la commande kill PID oukill -9 PID. La premiere
commande est similaire au fait d’appuyer sur la croix en haut d’une fenétre pour la fermer.
La deuxieme tue immédiatement le processus et toutes les données non sauvegardées sont
perdues.

Gestion des ressources

Comme nous l'avons vu, les processus utilisent tous de la mémoire, mais sur des plages
différentes. Cela ne pose donc pas de problemes. Mais certaines ressources ne peuvent pas
étre partagées de la méme maniere. C’est le cas de la plupart des ressources matérielles,
comme la carte son. Si un processus utilise le micro, un autre ne peut pas jouer de la musique
Les fichiers aussi peuvent poser probléme. Si un processus est en train d’écrire dans un
fichier il faut faire attention a ce que d’autres ne soient pas en train de le lire ou d’écrire.
Pour cela, on utilise des verrous qui permettent d’assurer l’exclusivité de 1’acces a une res-
source. Les processus demandent d’acces a une ressource. Une fois qu’elle est libre, ils la
verrouillent et aucun autre processus ne peut l'utiliser tant qu’ils ne 'ont pas relachée.

L’interblocage

Ce systeme de verrous peut provoquer des interblocages (deadlock) ou deux processus at-
tendent mutuellement une ressource utilisée par l'autre sans relacher la leur.

Voici un exemple ou deux processus A et B utilisent des ressources R et S.

Si le processeur exécute Al et BI, |

alors A2 et B2 vont faire entrer les
deux processus dans 1’état “bloqué”.
Aucun des deux ne va libérer sa res-
source et ils ne pourront jamais se
débloquer.

Par contre, si le processeur exécute Al puis A2 avant B1, alors B sera bloqué mais pas A qui
pourra libérer les ressources et permettre a B de s’exécuter.

En 1971, Edward Coffman Jr a énoncé les conditions nécessaires a la survenue d’un inter-
blocage:

Processus A | Processus B |

étape Al | demande R || étape B1 | demande S
étape A2 | demande S || étape B2 | demande R
étape A3 libere S || étape B3 libere R
étape A4 libere R || étape B4 libere S

* Au moins une ressource doit étre conservée dans un mode non partageable.
* Un processus doit maintenir une ressource et en demander une autre.
* Une ressource ne peut étre libérée que par le processus qui la détient.

* Chaque processus doit attendre la libération d’une ressource détenue par un autre qui fait
de méme.

Pour éviter cela on peut utiliser diverses stratégies :

* La prévention : on oblige le processus a déclarer a I’avance la liste de toutes les ressources
auxquelles il va accéder.

» I’évitement: on fait en sorte qu’a chaque étape il reste une possibilité d’attribution de
ressources qui évite le deadlock.

* la détection/résolution: on laisse la situation arriver jusqu’au deadlock, puis un algo-
rithme de résolution détermine quelle ressource libérer pour mettre fin a I'interblocage.

On peut aussi régler le probleme en ne donnant pas directement acces aux ressources. Sous
Linux, ce sont des processus spéciaux, appelés daemons qui accedent aux ressources. Ainsi,
pour accéder a la carte son, les autres processus passent par le daemon concerné. Il est le
seul a interagir avec la carte, ce qui permet a plusieurs processus d’utiliser le micro ou la
sortie son en méme temps.

Theéme 3 : Gestion des processus 4/4 NSI T

