
Lycée Les 3 Sources Bourg-Lès-Valence
NSI Tle – Thème 3 Année 2025-26

Gestion des processus

Exécution d’un programme sur un processeur

Nous avons vu l’année dernière que pour qu’un programme s’exécute sur le processeur, il
devait être traduit (par un compilateur ou un interpréteur) en langage machine. Au début
de l’exécution du programme, les instructions sont copiées en mémoire. Parmi les registres
du processeur, il y en a 2 qui ont un rôle spécial : IR contient l’instruction courante et IP
l’adresse de la prochaine. L’exécution d’une instruction se passe de la manière suivante :
1) le contenu de la mémoire vive à l’adresse pointée par IP est copiée dans IR ;
2) l’instruction contenue dans IR est décodée, ce qui active le circuit électrique qui réalise

l’opération visée ;
3) l’instruction décodée est exécutée et IP est mis à jour.
On continue ainsi jusqu’à ce que l’exécution se termine.
Sauf que ce fonctionnement correspond à un système mono-tâche. Le processeur ne peut
rien faire d’autre tant que l’exécution du programme n’est pas arrivée à son terme. Depuis
les années 70, les systèmes d’exploitation sont multi-tâches et permettent à plusieurs pro-
grammes de s’exécuter en parallèle. Mais comment faire cela avec un seul processeur ? Et
même avec les processeurs modernes, comment faire s’il y a plus de programmes que de
cœurs?

Les processus

Un processus est une instance d’un programme en cours d’exécution. Un même programme
peut être lancé plusieurs fois et dans ce cas, chaque instance est un processus différent.
Pour l’instant, considérons que le processeur ne possède qu’un seul cœur. Imaginons que
l’utilisateur est en train de programmer en Python à l’aide de Thonny et que son programme
actuel met beaucoup de temps avant de se terminer. En attendant, il utilise un navigateur
Internet pour consulter les documentations, le tout en écoutant de la musique stockée sur
son ordinateur. Le processeur doit donc exécuter au moins 3 processus en parallèle. Sauf
qu’un seul peut s’exécuter à la fois. Pour donner l’illusion du parallélisme, le processeur
va exécuter successivement quelques instructions de chaque processus avant de passer au
suivant.
Les processus ne sont donc pas constamment en
exécution. En fait, ils peuvent être dans 3 états :
• Prêt : le processus est prêt à être exécuté.
• Élu : le processus est en cours d’exécution.
• Bloqué : le processus a besoin d’une ressource

pour continuer son exécution.

créé terminéprêt élu

bloqué

élection

préemption

bl
oc
ag
e

déblocage

Pour comprendre l’état “bloqué”, on peut prendre l’exemple suivant. Lorsqu’on appuie sur
le bouton vert de Thonny, il va sauvegarder le fichier avant de l’exécuter. Il doit donc at-
tendre que le fichier ait été écrit avant de pouvoir passer à la suite. Pour ne pas faire perdre
du temps au processeur, le processus de Thonny passe dans l’état “bloqué”, ce qui l’empêche
d’être exécuté. Mais comment savoir quand débloquer Thonny?

Les interruptions

Le système produit des interruptions (action sur le clavier, disque qui signale la fin d’une
écriture, levée d’une exception. . . ). Lorsque le processeur reçoit une interruption, il finit
d’exécuter l’instruction en cours et active le gestionnaire d’interruption.

1/4



Ce dernier va regarder si un processus attendait cette interruption et si c’est le cas, il va le
débloquer.
Pour l’exemple précédent de Thonny, lorsque le disque dur envoie l’interruption signalant
la fin d’écriture, le gestionnaire d’interruption va faire passer Thonny dans l’état “prêt”.
Afin d’assurer l’alternance entre les processus, le processeur génère de lui-même des in-
terruptions, appelées interruptions d’horloge à intervalles réguliers. Pour les processeurs
actuels, c’est de l’ordre de 100 ns. Dans ce cas là, le gestionnaire d’interruption va utiliser
l’ordonnanceur qui va déterminer quel processus exécuter ensuite.

L’ordonnancement
Il existe plusieurs stratégies possibles pour l’ordonnancement. On peut choisir de passer au
processus le plus prioritaire, au plus rapide, au dernier arrivé, à celui qui attend depuis le
plus longtemps. . .
Linux peut utiliser plusieurs ordonnanceurs, dont un basé sur la stratégie du tourniquet
(round robin). Les processus “prêts” sont placés dans une file d’attente. Le premier de la
file est “élu” et exécuté pendant un certain laps de temps, appelé quantum. Si à la fin du
quantum le processus n’a pas terminé son exécution, il est interrompu et on le place à la fin
de la file. On passe alors au processus suivant.
Lorsqu’un processus passe de “bloqué” à “prêt”, il est placé à la fin de la file.
Dans la figure ci-contre, on peut voir
3 processus s’exécuter sur un proces-
seur. On prend un quantum comme
unité de mesure. Le processus T3 se
retrouve dans l’état “bloqué” à 2,7
parce qu’il attend une ressource, qui
semble être relâchée par T2 à la fin de
son exécution. Au total, T1 a pris 3,6
unités de temps, T2 1,5 et T3 1,6.

T1 T2 T3 T1 T2 T1 T3 T1Processeur

E P E P E P ET1

P E P ET2

P E B P ET3

0 1 2 2,7 3,7 4,2 5,2 6,1 6,7

Si un processeur possède plusieurs cœurs, il peut exécuter plusieurs processus en même
temps. Il peut y avoir une unique file pour tous les cœurs ou des files pour chaque cœurs.

Changement de contexte

Le processeur passe donc très régulièrement d’un processus à un autre. Mais pour qu’un
processus puisse continuer son exécution, il faut que les registres aient les mêmes valeurs
à la fin de son exécution et à sa reprise. Il faut donc sauvegarder ces valeurs lorsque le
processus est mis en pause.
Le système d’exploitation garde en permanence un certain nombre d’informations sur les
processus dans une structure appelée bloc de contrôle de processus, ou PCB pour Process
Control Bloc. Ces informations s’appellent le contexte du processus. On y retrouve princi-
palement :
• Le PID (Process ID) qui est un entier qui identifie le processus.
• L’état du processus (élu, prêt ou bloqué).
• Une sauvegarde des registres lors de la dernière interruption.
• La plage d’adresses allouée au processus pour son exécution.
• La liste des ressources utilisées : fichiers ouverts, connexions réseaux en cours, périphé-

riques utilisés. . .
Lorsque le processeur passe d’un processus A à un processus B, il doit donc sauvegarder
l’état des registres pour A dans le PCB, charger celui de B et reprendre son exécution. On
dit que c’est un changement de contexte.

Thème 3 : Gestion des processus 2/4 NSI Tle



Les threads
Parfois, un programme peut lui même faire plusieurs tâches en même temps. Par exemple,
un navigateur Internet peut en même temps lire une vidéo, télécharger un fichier, afficher
une nouvelle page et exécuter du code javascript sur un autre onglet. Pour cela, il peut gé-
nérer plusieurs fils d’exécution, ou threads. Ce sont des sous-processus, ou processus légers.
Ils partagent la même zone mémoire, alors que deux processus différents ont des zones dif-
férentes. À notre niveau, nous pourrons considérer que ce sont des processus comme les
autres.
L’utilisation de threads permet de faire de la programmation concurrente. L’idée est de dé-
couper le programme en plusieurs sous-programmes qui s’exécutent en parallèle. Cela pose
de vrais défis, puisque tous les problèmes ne se prettent pas très bien à ce genre d’approche.
Cela pose aussi des problèmes de synchronisation entre les différents threads, ce qui peut
entraîner des blocages.

Les processus en Linux

Pour visualiser les processus s’exécutant sur un ordinateur sous Linux, il faut utiliser la
commande ps. Il existe de très nombreuses options permettant d’obtenir plus ou moins
d’informations.
Voici un extrait obtenu avec jslinux.
[rootlocalhost root]# ps -efH
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 14:59 ? 00:00:00 /bin/sh /sbin/init
root 41 1 0 14:59 ? 00:00:00 dhcpcd
root 45 1 0 14:59 ? 00:00:00 /usr/bin/sh /bin/startx
root 64 45 0 15:00 ? 00:00:00 xinit /etc/X11/xinit/xinitrc
root 65 64 7 15:00 ? 00:00:13 /usr/libexec/Xorg :5 -auth
root 91 64 2 15:00 ? 00:00:05 fluxbox
root 113 91 1 15:00 ? 00:00:02 xterm
root 115 113 0 15:00 pts/0 00:00:00 bash

root 137 115 0 15:03 pts/0 00:00:00 ps -efH

Les colonnes correspondent respectivement à l’utilisateur du processus, son numéro, le nu-
méro de son parent, le pourcentage d’utilisation du processeur, l’heure de départ, le termi-
nal dans lequel il a été lancé (? s’il de provient pas d’un terminal), le temps d’utilisation du
processeur et la commande appelée. On remarque que le premier processus créé est init
qui lance tout le système d’exploitation. C’est lui qui lance, entre autres, dhcpcd (pour se
connecter au réseau) et startx (serveur graphique).
L’affichage se fait en une seule fois. Pour avoir une vision en temps réel de l’état des proces-
sus, on peut utiliser la commande top :
[rootlocalhost root]# top
top - 15:29:56 up 30 min, 0 users, load average: 0.00, 0.01, 0.02
Tasks: 24 total, 1 running, 23 sleeping, 0 stopped, 0 zombie
%Cpu(s): 13.0 us, 21.7 sy, 0.0 ni, 65.2 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 434.1 total, 381.3 free, 27.2 used, 25.6 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 398.3 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
219 root 20 0 8432 3124 2680 R 15.0 0.7 0:00.21 top
1 root 20 0 3136 2516 2148 S 0.0 0.6 0:00.77 init
41 root 20 0 1944 1472 1196 S 0.0 0.3 0:00.04 dhcpcd
65 root 19 -1 106480 22432 7576 S 0.0 5.0 0:15.96 Xorg

Thème 3 : Gestion des processus 3/4 NSI Tle



Pour tuer un processus, il faut utiliser la commande kill PID ou kill -9 PID. La première
commande est similaire au fait d’appuyer sur la croix en haut d’une fenêtre pour la fermer.
La deuxième tue immédiatement le processus et toutes les données non sauvegardées sont
perdues.

Gestion des ressources
Comme nous l’avons vu, les processus utilisent tous de la mémoire, mais sur des plages
différentes. Cela ne pose donc pas de problèmes. Mais certaines ressources ne peuvent pas
être partagées de la même manière. C’est le cas de la plupart des ressources matérielles,
comme la carte son. Si un processus utilise le micro, un autre ne peut pas jouer de la musique
Les fichiers aussi peuvent poser problème. Si un processus est en train d’écrire dans un
fichier il faut faire attention à ce que d’autres ne soient pas en train de le lire ou d’écrire.
Pour cela, on utilise des verrous qui permettent d’assurer l’exclusivité de l’accès à une res-
source. Les processus demandent d’accès à une ressource. Une fois qu’elle est libre, ils la
verrouillent et aucun autre processus ne peut l’utiliser tant qu’ils ne l’ont pas relâchée.

L’interblocage

Ce système de verrous peut provoquer des interblocages (deadlock) où deux processus at-
tendent mutuellement une ressource utilisée par l’autre sans relâcher la leur.
Voici un exemple où deux processus A et B utilisent des ressources R et S.
Si le processeur exécute A1 et B1,
alors A2 et B2 vont faire entrer les
deux processus dans l’état “bloqué”.
Aucun des deux ne va libérer sa res-
source et ils ne pourront jamais se
débloquer.

Processus A
étape A1 demande R
étape A2 demande S
étape A3 libère S
étape A4 libère R

Processus B
étape B1 demande S
étape B2 demande R
étape B3 libère R
étape B4 libère S

Par contre, si le processeur exécute A1 puis A2 avant B1, alors B sera bloqué mais pas A qui
pourra libérer les ressources et permettre à B de s’exécuter.
En 1971, Edward Coffman Jr a énoncé les conditions nécessaires à la survenue d’un inter-
blocage :
• Au moins une ressource doit être conservée dans un mode non partageable.
• Un processus doit maintenir une ressource et en demander une autre.
• Une ressource ne peut être libérée que par le processus qui la détient.
• Chaque processus doit attendre la libération d’une ressource détenue par un autre qui fait

de même.
Pour éviter cela on peut utiliser diverses stratégies :
• La prévention : on oblige le processus à déclarer à l’avance la liste de toutes les ressources

auxquelles il va accéder.
• l’évitement : on fait en sorte qu’à chaque étape il reste une possibilité d’attribution de

ressources qui évite le deadlock.
• la détection/résolution : on laisse la situation arriver jusqu’au deadlock, puis un algo-

rithme de résolution détermine quelle ressource libérer pour mettre fin à l’interblocage.
On peut aussi régler le problème en ne donnant pas directement accès aux ressources. Sous
Linux, ce sont des processus spéciaux, appelés daemons qui accèdent aux ressources. Ainsi,
pour accéder à la carte son, les autres processus passent par le daemon concerné. Il est le
seul à interagir avec la carte, ce qui permet à plusieurs processus d’utiliser le micro ou la
sortie son en même temps.

Thème 3 : Gestion des processus 4/4 NSI Tle


