
Lycée Les 3 Sources Bourg-Lès-Valence
NSI Tle – Thème 1 Année 2025-26

Exercices sur les arbres binaires

Arbres binaires
Dans cette partie, on utilisera les fonctions usuelles gauche(arbre), racine(arbre),
droite(arbre) et est_vide(arbre).

Exercice 1 : On considère la fonction ci-dessous :

def parcours(arbre):
if not est_vide(arbre):

parcours(gauche(arbre))
parcours(droite(arbre))
print(racine(arbre))

1) Comment s’appelle un tel parcours?
2) Dans quel ordre sont affichés les nœuds de l’arbre ci-contre?

H

D E

B

F

I

G

C

A

3) Compléter les nœuds de l’arbre ci-contre pour que les racines
soient affichées dans l’ordre suivant : C O M P U T E R.

4) Reprendre l’arbre de la question 2 et donner l’affichage avec un
parcours infixe.

Exercice 2 : On appelle peigne gauche un arbre binaire où tous les descen-
dants droits sont vides. L’arbre vide est un peigne gauche.
1) Écrire une fonction est_peigne_gauche(arbre) qui renvoie un booléen

indiquant si arbre est un peigne gauche ou non.
5

3

4

2) On utilise des triplets (gauche, racine, droite) pour représenter les arbres binaires.
L’arbre vide sera noté N. Ainsi, l’arbre ci-dessus est représenté par :
(((N, 5, N), 3, N), 4, N).
a) Écrire la représentation d’un peigne gauche de 4 nœuds contenant chacun la valeur

0.
b) Écrire une fonction peigne_gauche(n) qui renvoie un peigne gauche de n nœuds

contenant tous 0.

Arbres binaires de recherche
Pour cette partie, on accepte que les arbres binaires de recherche contiennent plusieurs fois
la même valeur. Une valeur v peut se retrouver aussi bien dans le descendant gauche que
dans le descendant droit d’un nœud dont la racine est v.

Exercice 3 : Parmi les 4 arbres ci-dessous, expliquer lesquels ne sont pas des arbres binaires
de recherche.

1 4

3

5 8

7

5

7

2

1

7 9

8

7

6

1 2

2

3

9

8

7

4

4

5

7 9

8

6

3

1/2



Exercice 4 : On utilise l’algorithme ci-dessous pour ajouter une valeur val à un arbre bi-
naire de recherche :
• Si l’arbre est vide, on crée une feuille contenant la valeur.
• Sinon, si la racine est strictement supérieure à val, on l’ajoute au descendant gauche.
• Sinon, on ajoute val au descendant droit.

1) Pour chacune des listes de nombres suivants, dessiner l’arbre obtenu en ajoutant les
nombres dans l’ordre, en partant de l’arbre vide.
a) [4, 1, 3, 5, 8, 7, 9]
b) [5, 1, 3, 7, 5, 1, 6]
c) [8, 9, 2, 7, 1, 3, 4]

2) Déterminer un ordre dans lequel donner les nombres suivants pour obtenir l’arbre ci-
contre.

1

2

1

3

5

5

4

3

6

7

9

8

8

7

6

Exercice 5 : On souhaite faire une fonction récursive compter(arbre, val) qui renvoie le
nombre d’occurences de val dans arbre.
1) On considère l’arbre a ci-dessous :

1

4

3

2

5

5

6

4

6

7

8

7

9 9

9

8

6

Déterminer le résultat des appels ci-dessous :
a) compter(a, 6)
b) compter(a, 2)
c) compter(a, 10)
d) compter(a, 0)

2) Que doit renvoyer compter(arbre, val) si arbre est vide?
3) En utilisant compter(gauche(arbre), val) et compter(droite(arbre), val), indiquer

ce que doit renvoyer compter(arbre, val) dans les cas suivants :
a) val < racine(arbre)
b) val > racine(arbre)
c) val = racine(arbre)

4) Écrire le code Python de la fonction compter(arbre, val).

2/2


