
Lycée Les 3 Sources Bourg-Lès-Valence
NSI Tle – Thème 1 Année 2025-26

Arbres binaires

Définition

Un arbre binaire peut être défini de façon récursive :
• Un arbre binaire peut être vide.
• S’il n’est pas vide, il est composé d’un nœud relié à deux autres

arbres binaires, appelés descendants gauche et droite. Ils sont
reliés à l’aide d’arêtes.

Nœud

Descend.
gauche

Descend.
droit

On appelle racine le nœud qui n’est pas dans un descendant d’un
autre nœud. En général, on le représente en haut. La taille d’un arbre
est le nombre de nœuds qu’il contient. On dit que les nœuds qui ont
deux descendants vides sont des feuilles.

prof. 0
prof. 1
prof. 2

racine

feuilles
La profondeur d’un nœud est le nombre d’arêtes nécessaires pour aller de la racine à ce
nœud. On peut définir la hauteur d’un arbre comme étant le nombre de nœuds entre la
racine et la feuille de profondeur maximale. C’est donc la profondeur maximale plus 1.
L’arbre vide a une hauteur de 0 et un arbre avec un unique nœud a une hauteur de 1. L’arbre
ci-dessus a donc une taille de 4 et une hauteur de 3.

Exercice 1 : Déterminer la taille et la hauteur de l’arbre ci-contre.

On peut parfois définir la hauteur comme étant la profondeur maximale.
Dans ce cas, l’arbre vide n’a pas de hauteur et un arbre avec un seul nœud
a une hauteur de 0.

Il y a un seul arbre binaire vide, une seule forme pour les arbres binaires
à un seul nœud et 2 pour ceux à 2 nœuds. Même s’ils sont symétriques,
on considère que les deux formes sont différentes.

Exercice 2 :
1) Dessiner tous les types d’arbres avec 3 nœuds.
2) Déterminer, en les dessinant ou pas, le nombre d’arbres binaires à 4 nœuds.
3) En utilisant les réponses aux questions précédentes, déterminer le nombre d’arbres à 5

nœuds.
Dans la suite, on pourra omettre les branches amenant à des arbres vides.

Propriétés

Pour cette partie, on notera N la taille de l’arbre considéré et h sa hauteur. Pour tout arbre
binaire, on a :

h ≤ N ≤ 2h − 1

Pour avoir un arbre de taille minimale et de hauteur maximale, il ne faut qu’un seul
nœud par niveau. Par définition, il y a une arête de moins que le nombre de nœuds.
On a donc h = N, d’où la minoration.

Au contraire, pour avoir la taille maximale et la hauteur minimale, il faut
remplir au maximum chaque niveau. On dit qu’un tel arbre est parfait. On a
alors :

N = 1 + 2 + 4 + . . .+ 2h−1 = 20 + 21 + 22 + . . .+ 2h−1 = 2h − 1

1/2



Parcours d’un arbre binaire
Pour l’instant nous n’avons pas eu besoin de regarder le contenu
des nœuds. En pratique, les arbres servent à stocker des in-
formations. On peut ne mettre ces informations que dans les
feuilles, mais en général, on le fait dans chaque nœud. Les don-
nées peuvent être de n’importe quel type, même si on manipu-
lera principalement des nombres.

"C"

"B" "D"

"A"

1 6

5 3

9

2

0

-8

7

La défintion récursive des arbres binaires permet de facilement faire des fonctions récur-
sives. Pour la suite, on utilisera les fonctions suivantes :

Fonction Description
racine(arbre) Renvoie la valeur à la racine de arbre.
gauche(arbre) Renvoie le descendant gauche de arbre.
droite(arbre) Renvoie le descendant droit de arbre.
est_vide(arbre) Renvoie un booléen indiquant si arbre est vide ou non.

Cette définition induit 3 types de parcours : préfixe, infixe et suffixe (ou postfixe). À chaque
fois, on traite la racine et on fait des appels récursifs sur descendants gauche et droite. La
différence vient du moment où est traité la racine.
Voici les structures des parcours préfixe et infixe :

def parc_prefixe(arbre):
if est_vide(arbre):

faire quelque chose (ou pas)
else:

qlq chose avec racine(arbre)
parc_prefixe(gauche(arbre))
parc_prefixe(droite(arbre))

def parc_infixe(arbre):
if est_vide(arbre):

faire quelque chose (ou pas)
else:

parc_infixe(gauche(arbre))
qlq chose avec racine(arbre)
parc_infixe(droite(arbre))

Pour un parcours suffixe, la racine est traitée à la fin. À chaque fois, nous avons fait l’appel
sur la partie gauche avant celui sur la partie droite. Il est possible de faire le contraire, mais
cela ne change pas grand chose dans le principe.

Exercice 3 : On considère les deux fonctions suivantes :

def aff_prefixe(arbre):
if not est_vide(arbre):

print(racine(arbre))
aff_prefixe(gauche(arbre))
aff_prefixe(droite(arbre))

def aff_infixe(arbre):
if not est_vide(arbre):

aff_infixe(gauche(arbre))
print(racine(arbre))
aff_infixe(droite(arbre))

1) Pour l’arbre avec les lettres ci-dessus, indiquer dans quel ordre sont affichées les valeurs
pour chacune des fonctions.

2) Même question avec le second arbre.

On peut remarquer que les nœuds sont toujours visités dans le même ordre, quelque soit le
type de parcours.

Exercice 4 : On considère l’arbre ci-contre.
1) Numéroter les flèches pour indiquer dans quel

ordre les nœuds sont visités.
2) Indiquer l’ordre dans lequel sont traités les

nœuds lors des parcours préfixe, infixe et suffixe.
h

c

i

l

j

d

a

k

e f

b

r

2/2


