Lycée Les 3 SOURCEs Bourg-Les-Valence

NSI Tl — Théeme 1 Année 2025-26
Arbres binaires

Définition

Un arbre binaire peut étre défini de facon récursive:

. . . Noeud
* Un arbre binaire peut étre vide. R

« S’il nest pas vide, il est composé d’un neeud relié a deux autres Descend. Descend
arbres binaires, appelés descendants gauche et droite. Ils sont gauche droit
reliés a I’'aide d’arétes.

On appelle racine le nceud qui n'est pas dans un descendant d’un (.?émfof 0
autre nceud. En général, on le représente en haut. La taille d’un arbre Erof: 1
est le nombre de nceuds qu’il contient. On dit que les noeuds qui ont \ prof. 2
deux descendants vides sont des feuilles. feuilles

La profondeur d’un nceud est le nombre d’arétes nécessaires pour aller de la racine a ce
nceud. On peut définir la hauteur d’un arbre comme étant le nombre de nceuds entre la
racine et la feuille de profondeur maximale. C’est donc la profondeur maximale plus 1.
L’arbre vide a une hauteur de 0 et un arbre avec un unique nceud a une hauteur de 1. L'arbre
ci-dessus a donc une taille de 4 et une hauteur de 3.

Exercice 1: Déterminer la taille et la hauteur de ’arbre ci-contre.

On peut parfois définir la hauteur comme étant la profondeur maximale.
Dans ce cas, l’arbre vide n’a pas de hauteur et un arbre avec un seul nceud
a une hauteur de 0.

Il y a un seul arbre binaire vide, une seule forme pour les arbres binaires }3\ }{K %i
a un seul nceud et 2 pour ceux a 2 nceuds. Méme s’ils sont symétriques,

on considere que les deux formes sont différentes.

EXERCICE 2 :

1) Dessiner tous les types d’arbres avec 3 noeuds.

2) Déterminer, en les dessinant ou pas, le nombre d’arbres binaires a 4 nceuds.

3) En utilisant les réponses aux questions précédentes, déterminer le nombre d’arbres a 5
neceuds.

Dans la suite, on pourra omettre les branches amenant a des arbres vides.

Propriétés

Pour cette partie, on notera N la taille de l’arbre considéré et h sa hauteur. Pour tout arbre
binaire,on a:

nceud par niveau. Par définition, il y a une aréte de moins que le nombre de nceuds.

h<N<2'-1
Pour avoir un arbre de taille minimale et de hauteur maximale, il ne faut qu’un seul %
On a donc h =N, d’ou la minoration.

remplir au maximum chaque niveau. On dit qu'un tel arbre est parfait. On a
alors:

Au contraire, pour avoir la taille maximale et la hauteur minimale, il faut),O\(

Nz=1+2+4+... 421220401422, 4okl _oh

1/2

Parcours d’un arbre binaire

Pour l'instant nous n’avons pas eu besoin de regarder le contenu @ (7

des nceuds. En pratique, les arbres servent a stocker des in-

formations. On peut ne mettre ces informations que dans les @ @ (9) 3
feuilles, mais en général, on le fait dans chaque noeud. Les don- CHONONO
Ve @

nées peuvent étre de n'importe quel type, méme si on manipu-
lera principalement des nombres.

La défintion récursive des arbres binaires permet de facilement faire des fonctions récur-
sives. Pour la suite, on utilisera les fonctions suivantes:

| Fonction | Description |
racine(arbre) Renvoie la valeur a la racine de arbre.
gauche(arbre) Renvoie le descendant gauche de arbre.
droite(arbre) Renvoie le descendant droit de arbre.
est_vide(arbre) | Renvoie un booléen indiquant si arbre est vide ou non.

Cette définition induit 3 types de parcours: préfixe, infixe et suffixe (ou postfixe). A chaque
fois, on traite la racine et on fait des appels récursifs sur descendants gauche et droite. La
différence vient du moment ou est traité la racine.
Voici les structures des parcours préfixe et infixe:

def parc_infixe(arbre):
if est_vide(arbre):

def parc_prefixe(arbre):
if est_vide(arbre):

faire quelque chose (ou pas)
else:

glq chose avec racine(arbre)

parc_prefixe(gauche(arbre))

parc_prefixe(droite(arbre))

faire quelque chose (ou pas)
else:

parc_infixe(gauche(arbre))

glq chose avec racine(arbre)

parc_infixe(droite(arbre))

Pour un parcours suffixe, la racine est traitée a la fin. A chaque fois, nous avons fait I'appel
sur la partie gauche avant celui sur la partie droite. Il est possible de faire le contraire, mais
cela ne change pas grand chose dans le principe.

Exercice 3 : On considére les deux fonctions suivantes:

def aff_prefixe(arbre):
if not est_vide(arbre):
print(racine(arbre))
aff_prefixe(gauche(arbre))
aff prefixe(droite(arbre))

def aff infixe(arbre):
if not est_vide(arbre):
aff_infixe(gauche(arbre))
print(racine(arbre))
aff_infixe(droite(arbre))

1) Pour l'arbre avec les lettres ci-dessus, indiquer dans quel ordre sont affichées les valeurs
pour chacune des fonctions.

2) Méme question avec le second arbre.

On peut remarquer que les noeuds sont toujours visités dans le méme ordre, quelque soit le

type de parcours. >

Exercice 4 : On considere ’arbre ci-contre.

1) Numéroter les fleches pour indiquer dans quel
ordre les nceuds sont visités.

2) Indiquer l'ordre dans lequel sont traités les
nceuds lors des parcours préfixe, infixe et suffixe.

2/2

