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Arbres binaires de recherche

Définition

Les arbres binaires permettent de stocker et de parcourir les données de façon non linéaire,
mais puisqu’il faut les parcourir en intégralité pour chercher une valeur, la complexité d’une
recherche reste linéaire. C’est parce que les valeurs ont été placées sans logique particulière.
Dans les arbres binaires de recherche (ABR), au contraire, les valeurs sont rangées de telle
sorte qu’il soit possible de savoir à tout moment vers quel sous-arbre se diriger pour trouver
la valeur cherchée. Le principe est le suivant : pour tout sous-arbre, les valeurs du descen-
dant gauche sont inférieures à la racine et celles du descendant droit sont supérieures.
Ainsi, parmi les 3 arbres ci-dessous,
seuls les 2 premiers sont des ABR.
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Exercice 1 : Com-
pléter les arbres ci-
contres avec les va-
leurs 1, 2, 3 et 4 pour
former des ABR.

Recherche d’une valeur
Comme son nom l’indique, un ABR
est conçu pour chercher des valeurs.
Le principe est simple. Si la valeur
cherchée est plus petite que la ra-
cine, il faut la chercher à gauche, si-
non à droite, si elle n’est pas égale à
la racine.
La fonction ci-contre permet d’effec-
tuer cette recherche dans un ABR.

def est_dans(arbre, val):
if est_vide(arbre):

return False
elif val < racine(arbre):

return est_dans(gauche(arbre), val)
elif val > racine(arbre):

return est_dans(droite(arbre), val)
else:

return True

Exercice 2 : Surligner ou entourer tous les nœuds étudiés lors de la recherche du nombre 7
dans chacun de ces arbres.
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On peut remarquer que bien que contenant les mêmes valeurs, la recherche n’est pas aussi
efficace pour chacun de ces ABR. Dans le pire des cas, si l’arbre est filiforme, comme le
premier de l’exercice 1, la recherche redevient linéaire. Au contraire, dans le cas idéal, avec
un arbre parfait, ou presque, la recherche est logarithmique. Dans le pire des cas, il faut
parcourir h nœuds, où h est la hauteur de l’arbre.
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Lorsque l’arbre est équilibré au maximum, alors il contient
entre 2h−1 et 2h − 1 nœuds. Or, si 2h−1 ≤ k < 2h, alors⌊
log2(k)

⌋
= h− 1. Si l’arbre est de taille N, on a donc :⌊

log2(N)
⌋
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Dans le meilleur des cas, on retrouve une complexité logarithmique, comme pour une re-
cherche dichotomique.

Ajout d’un élément

Si on veut qu’un ABR soit efficace pour la re-
cherche, il faut faire attention à la façon dont
il est construit. Tout d’abord, il faut voir com-
ment insérer les valeurs. On peut utiliser l’al-
gorithme ci-contre. On suppose que l’arbre est
modifié par la fonction et que creer_feuille
transforme l’arbre vide en un arbre ne conte-
nant qu’un nœud.

def inserer(arbre, val):
if est_vide(arbre):

creer_feuille(arbre, val)
elif val < racine(arbre):

inserer(gauche(arbre), val)
else:

inserer(droite(arbre), val)
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Exercice 3 : On part d’un arbre vide.
1) Dessiner l’ABR obtenu, en partant de l’arbre vide, après l’insertion, dans l’ordre, de 9, 4,

6, 10, 3, 5, 15, 2, 8 et 11
2) Rajouter 9 et 4 à l’arbre.

On peut remarquer que notre fonction n’empêche pas de rajouter plusieurs fois la même
valeur dans l’arbre. Selon les besoins, on pourra interdire un tel ajout, ou l’autoriser.
Au niveau de la complexité, lors d’un ajout, on fait le même type de parcours que pour une
recherche. La complexité est donc logarithmique dans le meilleur des cas et linéaire dans
le pire. Néanmoins, si les valeurs sont ajoutées “au hasard”, la complexité de chaque ajout
reste logarithmique. Il faut surtout éviter de trier les valeurs avant de les insérer.
La suppression est plus complexe puisqu’elle nécessite, dans certains cas, de modifier la
structure de l’arbre autour du nœud modifié. La complexité reste néanmoins la même que
pour l’ajout ou la recherche.

Comparaison avec les autres structures

Nous avons vu, qu’en moyenne, l’ajout et la recherche d’éléments dans un ABR est loga-
rithmique. Pour un tableau, la recherche est logarithmique, grâce à la dichotomie, mais on
ne peut pas ajouter de valeurs, à moins de devoir tout recopier dans un nouveau tableau,
ce qui est linéaire. Si toutes les valeurs sont connues à l’avance, si on doit les trier, la com-
plexité devient O(n logn). Avec une liste chaînée, l’insertion est plus rapide, tout en restant
linéaire et la recherche est également linéaire puisqu’on ne peut pas accéder directement à
une valeur par son indice.
Globalement, les tableaux sont intéressants si les données sont statiques, mais si on doit en
ajouter, les ABR sont plus efficaces. Afin de garantir que la complexité reste logarithmique, il
est possible d’utiliser des arbres AVL ou “rouge-noir”, pour lesquels l’équilibrage est garanti
à l’insertion ou à la suppresion des valeurs. Ces opérations restent logarithmiques.
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