
Lycée Les 3 Sources Bourg-Lès-Valence
NSI Tle Année 2025-26

Devoir surveillé no4 – Correction
Nom et prénom :

Exercice 1 : (13pt) Cet exercice porte sur les arbres binaires et la programmation Python.
Le codage de Shannon-Fano est un système de codage utilisé pour la compression sans pertes
de données. Il a été mis au point par Robert Fano d’après une idée de Claude Shannon.
Partie A
Dans cette partie, on va étudier l’utilisation des arbres de codage.
Un arbre de codage est un arbre binaire où chaque feuille contient un symbole du texte que
l’on souhaite coder. Le code binaire d’un symbole s’obtient alors en concaténant les 0 et les
1 sur les branches qui mènent de la racine à la feuille contenant ce symbole. Par exemple,
pour l’arbre de codage donné en Figure 1, le symbole c est codé par le mot binaire 1101,
tandis que d est codé par le mot binaire 11000. Les codes binaires des symboles ne sont donc
pas tous de la même taille. Pour décoder un mot binaire, il suffit de descendre dans l’arbre,
depuis la racine, selon les 0 et les 1 qu’on lit jusqu’à trouver une feuille (et donc un symbole),
puis de recommencer avec la suite du mot binaire pour décoder les symboles suivants.

1 0

1 0 1 0

e
1 0 1 0 1 0

s _

1 0 1 01 0 1 0

i u c , p n j

1 0

o d

Figure 1. Exemple d’arbre de codage

1) Écrire le mot binaire qui sera utilisé pour encoder le caractère espace, représenté par le
symbole _ dans l’arbre.
Solution : Le mot sera 010.

2) Déterminer le texte codé par le mot binaire 0001110101111110011001.
Solution : On trouve 00︸︷︷︸

e

011︸︷︷︸
s

1010︸︷︷︸
p

1111︸︷︷︸
i

11001︸︷︷︸
o

1001︸︷︷︸
n

.

3) Citer le type de parcours de l’arbre qui permettrait d’obtenir les symboles classés par
taille d’encodage croissante.
Solution : Il faut faire un parcours en largeur.

Partie B
Dans cette partie, on va utiliser le codage de Shannon-Fano pour encoder le texte :
je pense, donc je suis

1/10

Dans la méthode de Shannon-Fano, l’arbre de codage est calculé pour un texte donné par
l’algorithme suivant.

• Étape 1 : classer les symboles du texte par nombre d’occurrences croissant ;
• Étape 2 : en gardant le classement obtenu, séparer les symboles en deux sous-groupes de

sorte que les totaux des nombres d’occurrences soient les plus proches possibles dans les
deux sous-groupes ;

• Étape 3 : placer tous les symboles du premier groupe dans le fils gauche (côté étiqueté par
1), et ceux du second groupe dans le fils droit (côté étiqueté par 0) ;

• Étape 4 : recommencer récursivement pour chacun des sous-groupes jusqu’à ce qu’ils
n’aient plus qu’un seul symbole ; on a alors une feuille étiquetée par ce symbole.

Après avoir classé les symboles par nombre d’occurrences croissant (étape 1), on obtient le
tableau suivant :

symbole i u c o d , p n j s _ e
nombre d’occurrences 1 1 1 1 1 1 1 2 2 3 4 4

4) Justifier par le calcul que l’étape 2 mène à la situation illustrée par la Figure 2.
Solution : Dans la partie gauche du tableau, on a un total de 11 occurrences, tout comme
dans la partie droite.

i
1

u
1

c
1

o
1

d
1

,
1

p
1

n
2

j
2

s
3

_
4

e
4

1 0

i
1

u
1

c
1

o
1

d
1

,
1

p
1

n
2

j
2

s
3

_
4

e
4

Figure 2. Le résultat de l’étape 2

En appliquant l’algorithme de Shannon-Fano, on peut obtenir l’arbre de la Figure 3.

i
1

u
1

c
1

o
1

d
1

,
1

p
1

n
2

j
2

s
3

_
4

e
4

1 0

i
1

u
1

c
1

o
1

d
1

,
1

p
1

n
2

j
2

s
3

_
4

e
4

1 0 1 0

i
1

u
1

c
1

o
1

d
1

,
1

p
1

n
2

j
2

s
3

_
4 e

1 0 1 0 1 0
i
1

u
1

c
1

o
1

d
1

,
1

p
1

n
2

j
2 s _

1 0 1 01 0 1 0
o
1

d
1i u c , p n j

1 0

o d

Figure 3. Arbre de codage obtenu par l’algorithme de Shannon-Fano

Nom et prénom :
On rappelle qu’un arbre réduit à un seul nœud, c’est-à-dire réduit à une feuille, est de hau-
teur 0.

5) Donner la hauteur de l’arbre de la Figure 3 et préciser dans le contexte de l’exercice ce
qu’elle représente.
Solution : La hauteur est de 5.

Devoir surveillé no4 2/10 NSI Tle

On rappelle que dans le code ASCII, chaque symbole est codé sur un octet.

6) Justifier, en comparant le codage ASCII et le codage de Shannon-Fano, que ce second
codage permet d’utiliser environ deux fois moins d’octets pour le texte :
je pense, donc je suis

Solution : Pour le codage ASCII, il faut 22 octets, donc 176 bits. Avec le codage de
Shanon-Fano, on obtient une chaîne de 75 bits. C’est donc plus de deux fois moins.

7) Dessiner, en vous inspirant de l’arbre de la Figure 1, un arbre de codage qui permettrait
d’encoder le mot « chiffrer » en utilisant l’algorithme de Shannon-Fano.

c
1

e
1

h
1

i
1

f
2

r
2

1 0

c
1

e
1

h
1

i
1

f
2

r
2

1 0 1 0
c
1

e
1

h
1

i
1 f r

1 0 1 0

c e h i

Partie C
Dans cette partie, on souhaite écrire une fonction Python qui donnera le mot binaire ob-
tenu pour coder un texte avec l’algorithme de Shannon-Fano. On commence par la fonction
creer_dico_occ :

1 def creer_dico_occ(texte):
2 """renvoie un dictionnaire dont les clés sont les
3 symboles de texte et les valeurs associées leur
4 nombre d'occurences dans texte"""
5 dico = {}
6 for symbole in texte:
7 if symbole in dico:
8 dico[symbole] = ...
9 else:

10 dico[symbole] = ...
11 return dico

8) Compléter les lignes 8 et 10 du code de la fonction creer_dico_occ.
def creer_dico_occ(texte):

dico = {}
for symbole in texte:

if symbole in dico:
dico[symbole] = dico[symbole] + 1

else:
dico[symbole] = 1

return dico

On dispose d’une fonction creer_tab_trie qui prend en paramètre un dictionnaire construit
avec la fonction creer_dico_occ et qui renvoie une liste de tuples classés dans l’ordre crois-
sant d’occurrences des symboles. Par exemple :

Devoir surveillé no4 3/10 NSI Tle

>>> texte = 'je pense, donc je suis'
>>> dico = creer_dico_occ(texte)
>>> creer_tab_trie(dico)
[('i', 1), ('u', 1), ('c', 1), ('o', 1), ('d', 1), (',', 1),
('p', 1), ('n', 2), ('j', 2), ('s', 3), (' ', 4), ('e', 4)]

9) Écrire une fonction somme_occ qui prend en paramètres un tableau tab de tuples
(symbole, nb_occ) et qui renvoie la somme des nombres d’occurrences des symboles du
tableau. Les tuples utilisés sont de même structure que l’élément renvoyé dans l’exemple
précédent.

def somme_occ(tab):
somme = 0
for symbole, nb_occ in tab:

somme += nb_occ
return somme

On suppose pour la suite qu’on dispose d’une fonction separe qui sépare un tableau trié en
deux sous-tableaux de manière à ce que les sommes de ces derniers soient les plus proches
possible :

1 def separe(tab):
2 moitie = somme_occ(tab) // 2
3 somme = 0
4 i = 0
5 while moitie > somme:
6 somme = somme + tab[i][1]
7 i = i + 1
8 tab1 = [tab[k] for k in range(0, i)]
9 tab2 = [tab[k] for k in range(i, len(tab))]

10 return tab1, tab2

10) Compléter les lignes 9 et 11 du code de la fonction récursive shannon qui prend en pa-
ramètres un caractère symbole et un tableau trié tab et qui renvoie l’écriture binaire
associée à symbole dans le tableau tab.

1 def shannon(symbole, tab):
2 """renvoie l'écriture binaire associée à symbole
3 dans le tableau trié tab"""
4 if len(tab) == 1:
5 return ""
6 else:
7 t1, t2 = separe(tab)
8 if symbole in [elt[0] for elt in t1]:
9 return "1" + ...

10 else:
11 return "0" + ...

Devoir surveillé no4 4/10 NSI Tle

def shannon(symbole, tab):
if len(tab) == 1:

return ""
else:

t1, t2 = separe(tab)
if symbole in [elt[0] for elt in t1]:

return "1" + shannon(symbole, t1)
else:

return "0" + shannon(symbole, t2)

11) Décrire ce qui garantit la terminaison de la fonction récursive shannon.
Solution : Lors de chaque appel récursif, la taille du tableau est divisé par 2. Donc il
finira forcément par être vide.

12) Écrire une fonction encode_shannon qui prend en paramètre un texte de type str et
renvoie un mot binaire de type str obtenu après encodage par l’algorithme de Shannon-
Fano.
On pourra utiliser les fonctions vues précédemment qui sont recensées ci-après.

creer_dico_occ(texte)
renvoie un dictionnaire dont les clés sont les symboles
du texte et les valeurs associées leur nombre
d’occurrences

creer_tab_trie(dico)
renvoie la liste crée à partir d’un dictionnaire
de couples (symbole, nb_occ)

separe(tab)
renvoie le tuple composé des 2 sous-tableaux triés
avec des sommes d’occurences proches

shannon(symbole, tab)
renvoie l’écriture binaire associée au symbole dans le
tableau trié tab

def encode_shannon(texte):
dico = creer_dico_occ(texte)
tab = creer_tab_trie(dico)
reponse = ""
for s in texte:

reponse = reopnse + shannon(s, tab)
return reponse

Devoir surveillé no4 5/10 NSI Tle

Exercice 2 : (14pt) Cet exercice porte sur les bases de données et les requêtes SQL, les arbres
binaires et les algorithmes sur les arbres binaires.
Partie A
Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

• construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec les opérateurs
logiques AND, OR), JOIN ... ON ;

• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE, INSERT, DELETE.

Une exoplanète est une planète située hors du système solaire. La plupart des exoplanètes
découvertes à ce jour orbitent autour d’une unique étoile.
Une étoile est repérée précisément dans le ciel par son ascension droite et sa déclinaison
(voir Figure 1). La direction de coordonnées (0, 0) est une direction fixe du ciel servant
d’origine de ce système de coordonnées.

Terre

(0, 0)

Étoile

Déclinaison

Ascension droite

Figure 1. Coordonnées d’une étoile

On considère dans cet exercice deux relations décrivant des étoiles et les exoplanètes orbi-
tant autour d’elles :
• la relation Etoiles contient les informations décrivant des étoiles :

• id_etoile : l’identifiant unique de l’étoile (nombre entier) ;
• nom : le nom de l’étoile (chaîne de caractères) ;
• ascension : l’ascension droite de l’étoile en degré (nombre réel) ;
• declinaison : la déclinaison de l’étoile en degré (nombre réel).

• la relation Exoplanetes contient les informations décrivant des exoplanètes :
• id_exoplanete : l’identifiant unique de l’exoplanète (nombre entier) ;
• masse : la masse de l’exoplanète, exprimée sous la forme d’une fraction de la masse de

la planète Jupiter (nombre réel) ;
• rayon : le rayon de l’exoplanète, exprimée sous la forme d’une fraction du rayon de la

planète Jupiter (nombre réel) ;
• id_etoile : l’identifiant de l’étoile autour de laquelle orbite l’exoplanète (nombre en-

tier).
Une exoplanète dont l’attribut masse est égal à 6.84 a une masse 6,84 fois plus grande que
celle de la planète Jupiter.

Devoir surveillé no4 6/10 NSI Tle

On fournit ci-dessous des extraits de ces deux tables :

Etoiles
id_etoile nom ascension declinaison

1 109 Psc 26.23 20.08
2 beta Pic 86.82 −51.07
3 K2-21 340.30 −14.49
4 Kepler-11 297.12 41.91

Exoplanetes
id_exoplanete masse rayon id_etoile

1 6.84 1.15 1
2 11.90 1.65 2
3 8.89 1.20 2
4 0.01 0.16 3
5 0.02 0.22 3
6 0.01 0.16 4
7 0.01 0.26 4

L’attribut id_exoplanete est la clé primaire de la relation Exoplanetes. L’attribut id_etoile
est la clé primaire de la relation Etoiles.

1) Expliquer pourquoi l’attribut masse de la relation Exoplanetes ne peut pas servir de clé
primaire de cette relation.
Solution : Il y a plusieurs planètes avec la même masse. Les valeurs ne sont pas uniques
et cet attribut ne peut donc pas être une clé primaire.

2) Donner le nom de l’attribut pouvant être utilisé comme clé étrangère dans la relation
Exoplanetes. Expliquer son rôle.
Solution : On peut utiliser id_etoile pour relier la table Exoplanetes à la table Etoile.

3) Donner le résultat de la requête SQL suivante :

SELECT masse, rayon
FROM Exoplanetes
WHERE id_exoplanete = 4;

Solution : On va obtenir la masse et le rayon de l’exoplanète dont l’identifiant est 4. On
va donc obtenir 0,01 et 0,16.

4) Écrire une requête SQL permettant d’obtenir l’identifiant et le nom des étoiles dont l’as-
cension droite est supérieure ou égale à 100 degrés.
Solution :
SELECT id_etoile, nom FROM Etoiles
WHERE ascension >= 100;

On souhaite insérer une nouvelle exoplanète de rayon égal à 0,37 fois celui de Jupiter et
pesant 0,03 fois la masse de Jupiter. Cette exoplanète orbite autour de l’étoile Kepler-11
dont l’identifiant est 4. On pourra attribuer à cette nouvelle exoplanète l’identifiant 9 qui
n’apparaît pas dans la relation Exoplanetes.
5) Écrire une requête SQL permettant d’insérer cette nouvelle exoplanète dans la base de

données.
Solution :
INSERT INTO Exoplanetes VALUES (9, 0.03, 0.37, 4);

Devoir surveillé no4 7/10 NSI Tle

6) Écrire une requête SQL permettant d’obtenir les rayons des exoplanètes orbitant autour
de l’étoile nommée Kepler-11, dont l’identifiant est supposé non connu.
Solution :
SELECT rayon FROM Exoplanetes
JOIN Etoiles ON Etoiles.id_etoile = Exoplanetes.id_etoile
WHERE nom = "Kepler-11";

Partie B
On souhaite désormais écrire une application Python permettant de classer et de retrouver
efficacement les étoiles selon leur position dans le ciel.
On rappelle qu’une étoile est repérée par son ascension droite et sa déclinaison. Par souci de
simplicité, on considère désormais que deux étoiles ont toujours des coordonnées entières
et distinctes. On représente en Python les coordonnées d’une étoile par un tuple d’entiers
(ascension, declinaison).
Dans la suite, on considère les étoiles dont les coordonnées sont contenues dans la liste de
tuples etoiles définie par :

etoiles = [(29, 21), (17, 14), (10, 30), (35, 13), (30, 63), (15, 20)]

On cherche à construire un arbre binaire de recherche à partir des coordonnées présentes
dans la liste etoiles afin d’accélérer les opérations de traitement sur celles-ci. Pour cela :
• on commence par trier la liste etoiles par ordre croissant, afin que l’arbre résultant soit

de hauteur minimale ;
• pour construire l’arbre binaire de recherche à partir des éléments de la liste etoiles com-

pris entre les indices debut (inclu) et fin (exclu) :
• la racine de l’arbre est l’élément d’indice milieu définit par milieu = (debut + fin)//2 ;
• on construit récursivement le sous arbre gauche à l’aide des éléments de la liste etoiles

compris entre les indices debut (inclu) et milieu (exclu) ;
• on construit récursivement le sous arbre droit à l’aide des éléments de la liste etoiles

compris entre les indices milieu + 1 (inclu) et fin (exclu).
Pour implémenter cet algorithme, on représente en Python les arbres binaires non vides à
l’aide de tuples de trois éléments (sag, position, sad) dans lesquels :
• position est la valeur de la racine. Cette valeur est le couple de coordonnées permettant

de repérer l’étoile ;
• sag et sad sont respectivement les sous-arbres gauche et droit de l’arbre.
L’arbre vide est quant à lui représenté par None.
On rappelle que l’on peut comparer des tuples en Python à l’aide de l’opérateur < : on com-
pare tout d’abord les valeurs à l’indice 0 de chaque couple puis, en cas d’égalité, celles à
l’indice 1.
Ainsi, les expressions (1, 4) < (2, 3) et (1, 4) < (1, 6) s’évaluent toutes les deux à
True.
La fonction sorted de Python prend en argument une liste et renvoie une nouvelle liste
contenant les mêmes valeurs triées dans l’ordre croissant à l’aide de l’opérateur <.
7) Donner la liste renvoyée par l’instruction sorted(etoiles).

Solution : [(10, 30), (15, 20), (17, 14), (29, 21), (30, 63), (35, 13)]
8) Dessiner l’arbre binaire représenté par le tuple :

(((None, (1, 34), None), (2, 35), None), (11, 36), (None, (17, 30), None))

Devoir surveillé no4 8/10 NSI Tle

(17, 30)

(1, 34)

(2, 35)

(11, 36)

L’arbre construit à partir de la liste etoiles a donc pour représentation Python :

(((None, (10, 30), None), (15, 20), (None, (17, 14), None)),
(29, 21), ((None, (30, 63), None), (35, 13), None))

Il est représenté sur la Figure 2 ci-après.

(30, 63)

(35, 13)

(17, 14)(10, 30)

(15, 20)

(29, 21)

Figure 2. Arbre associé à la liste etoiles

9) Dessiner l’arbre binaire de recherche obtenu à partir de la liste :

[(1, 33), (2, 30), (2, 33), (4, 30), (8, 39)]

(4, 30)

(8, 39)

(1, 34)

(2, 30)

(2, 33)

10) Compléter les lignes 3, 7, 8, 9 et 11 du code de la fonction construction qui prend en
paramètres une liste etoiles supposée triée par ordre croissant, ainsi que deux entiers
debut et fin. Cette fonction renverra l’arbre binaire de recherche associé aux coordon-
nées présentes entre les indices debut (inclus) et fin (exclu) de la liste etoiles.
Par exemple, l’appel initial permettant de construire l’arbre associé à la liste etoiles est
construction(etoiles, 0, 6).
L’indice du milieu est 3, le sous-arbre gauche est renvoyé par l’appel
construction(etoiles, 0, 3) et le sous-arbre droit par construction(etoiles, 4, 6).

1 def construction(etoiles, debut, fin):
2 if debut == fin:
3 return ...
4
5 milieu = (debut + fin) // 2
6
7 sag = construction(..)
8 racine = ...
9 sad = ...

10
11 return ...

Devoir surveillé no4 9/10 NSI Tle

def construction(etoiles, debut, fin):
if debut == fin:

return None

milieu = (debut + fin) // 2

sag = construction(etoiles, debut, milieu)
racine = etoiles[milieu]
sad = construction(etoiles, milieu+1, fin)

return (sag, racine, sad)

11) Écrire le code de la fonction en_arbre qui prend en paramètre une liste etoiles de
couples de coordonnées non triés et renvoie l’arbre construit selon la démarche décrite
plus haut. On pourra utiliser la fonction construction de la question précédente.
def en_arbre(etoiles):

liste = sorted(etoiles)
return construction(liste, 0, len(liste))

On souhaite désormais écrire une fonction contient qui prend en paramètres un arbre bi-
naire de recherche arbre tel que renvoyé par la fonction construction ainsi qu’un tuple
d’entiers position représentant les coordonnées d’une étoile. Cette fonction renvoie True si
l’arbre contient cette étoile, False dans le cas contraire.

12) Compléter les lignes 3, 8, 9, 10 et 12 du code de la fonction contient.

1 def contient(arbre, position):
2 if arbre is None:
3 return ...
4
5 sag, valeur, sad = arbre
6
7 if position < valeur:
8 return contient(.....................,)
9 elif:

10 return ...
11 else:
12 return ...

def contient(arbre, position):
if arbre is None:

return False

sag, valeur, sad = arbre

if position < valeur:
return contient(arbre[0], position)

elif position > valeur:
return contient(arbre[2], position)

else:
return True

Devoir surveillé no4 10/10 NSI Tle

