
Lycée Les 3 Sources Bourg-Lès-Valence
NSI Tle Année 2025-26

Devoir surveillé no3 – Correction
Nom et prénom :

Exercice 1 : (12pt) Cet exercice porte sur les bases de données relationnelles et les requêtes SQL.
Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :
• construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec les opérateurs

logiques AND et OR) et JOIN ... ON ;
• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE, INSERT et DELETE ;
• affiner les recherches à l’aide de DISTINCT et ORDER BY.
La ville de Bois-Plage a décidé d’organiser, pendant un mois de juillet, un tournoi sportif
de volley-ball par équipes de 4. Elle met à disposition des personnes intéressées un site
d’inscription en ligne qui utilise un système de gestion de base de données.
Le schéma de la base de données utilisée est donné ci-dessous, en figure 1. Sur ce schéma, les
clés primaires ont été soulignées et les clés étrangères indiquées par un croisillon (symbole
#).

joueur
id_joueur : INT

nom : TEXT
prenom : TEXT
ann_naiss : TEXT
commune : TEXT
num_port : TEXT

equipe
id_equipe : INT

nom : TEXT
#j_1 : INT
#j_2 : INT
#j_3 : INT
#j_4 : INT
points : INT

match
id_match : INT
#eq_1 : INT
#eq_2 : INT
#eq_gagnante : INT
score : TEXT

Figure 1. Schéma de la base de données
À la clôture des inscriptions, de nombreuses équipes sont inscrites. On donne ci-dessous des
extraits des tables joueur et equipe obtenues à l’issue de la phase d’inscription.

equipe
id_equipe nom j_1 j_2 j_3 j_4 points

8 Les Mr Freeze 7 12 5 33 0
9 Tagadas Winners 45 23 67 65 0

10 Volley Warriors 25 27 30 35 0
11 Les Piafs 37 32 41 28 0

joueur
id_joueur nom prenom ann_naiss commune num_port

25 Leclerc Océane 2008 Bois-Plage 0660358945
26 Renault Henri 1971 Guilland 0625597427
27 Desousa Laure 1980 Bois-Plage 0746881113
28 Hernand Yves 1986 Lebrundan 0739401689
29 Giraud Brigitte 1972 Saint-Adrien 0651936319
30 Barbier Laure 1979 Bois-Plage 0787028125

1) Expliquer, dans les relations précédentes, le rôle des clés primaires. Solution : Les clés
primaires servent à rendre unique chacune des entrées de chaque table.

2) Expliquer quelle situation ne serait pas possible dans la table match si le champ id_match
n’avait pas été introduit dans cette table. Solution : Sans id_match, il ne serait pas pos-
sible d’avoir deux matchs avec les mêmes équipes et le même score.

1/6

3) Donner le résultat de la requête suivante en l’appliquant à l’extrait de la table joueur
donné dans l’énoncé.

SELECT prenom FROM joueur WHERE ann_naiss < 1985;

Solution : On va obtenir les prénom des joueurs nés avant 1985. On obtiendra donc
Henri, Laure, Brigitte et Laure.

4) Modifier la requête précédente afin d’éviter les éventuels doublons.
Solution : SELECT DISTINCT prenom FROM joueur WHERE ann_naiss < 1985;

5) Écrire une requête SQL permettant d’obtenir tous les noms, années de naissance et nu-
méros de téléphone portable des personnes qui habitent à Bois-Plage.
Solution : SELECT nom, ann_naiss, num_port FROM joueur WHERE commune = "Bois-Plage";

L’organisateur souhaite obtenir l’identité du premier joueur de l’équipe "les Kangourous".
L’équipe "les Kangourous" n’apparaît pas dans l’extrait.
6) Écrire une requête SQL permettant d’obtenir le nom et le prénom du joueur j_1 de

l’équipe "les Kangourous".
SELECT joueur.nom, prenom FROM joueur
JOIN equipe ON equipe.j_1=joueur.id_joueur
WHERE equipe.nom="les Kangourous";

L’équipe “Volley Warriors” a terminé le tournoi avec un total de 5 points.
7) Écrire une requête SQL permettant de mettre à jour la table equipe avec le nombre de

points gagnés par l’équipe "Volley Warriors".
Solution : UPDATE equipe SET points=5 WHERE nom="Volley Warriors";

8) Écrire une requête SQL permettant de supprimer de la table joueur le joueur ayant pour
identifiant le numéro 35.
Solution : DELETE FROM joueur WHERE id_joueur=35;

À la clôture du tournoi, la table match est totalement complétée. Un extrait de cette table
est donné ci-dessous.

match
id_match eq_1 eq_2 eq_gagnante score

32 3 8 8 25-20
33 3 9 3 25-15
34 3 10 10 25-7

9) Écrire une requête SQL permettant d’obtenir la liste des identifiants de matchs auxquels
a participé l’équipe ayant pour identifiant 12.
SELECT id_match FROM match
WHERE eq_1=12 OR eq_2=12;

10) Écrire une requête SQL permettant d’obtenir la liste des identifiants des matchs pour
lesquels le joueur 1 de l’équipe 1 du match vient de la commune de Bois-Plage.
SELECT id_match FROM match
JOIN equipe ON match.eq_1=equipe.id_equipe
JOIN joueur ON joueur.id_joueur=equipe.j_1
WHERE commune="Bois-Plage";

11) Écrire une requête SQL permettant d’obtenir la liste, classée par ordre alphabétique, des
noms et prénoms des joueurs ayant gagné au moins un match en tant que joueur 1 de
l’équipe 1 du match.

Devoir surveillé no3 2/6 NSI Tle

SELECT DISTINCT joueur.nom, prenom FROM joueur
JOIN equipe ON joueur.id_joueur=equipe.j_1
JOIN match ON match.eq_1=equipe.id_equipe
WHERE match.eq_gagnante=match.eq_1
ORDER BY joueur.nom, prenom;

Exercice 2 : (14pt) Cet exercice porte sur les piles, la programmation objet et l’algorithmique.
Défi Tubes est un jeu à un joueur. Le joueur dispose de 4 tubes. Chaque tube peut contenir
de 0 à 3 phases. Chaque phase possède une couleur. Il y a 3 couleurs possibles. On peut
s’imaginer ces phases comme des palets de couleur dans le tube.

Pour modéliser les couleurs, on utilisera les entiers 1, 2
et 3. Lorsqu’un tube contient 0 phase, on dit que le tube
est vide. Lorsqu’il en a 3, on dit qu’il est plein. Lorsqu’un
tube n’est pas vide, sa dernière couleur est la couleur de
sa phase supérieure.

2
1
1

phases

dernière
couleur

Figure 1. Exemple de tube.

Le jeu Défi Tube consiste à verser successivement la dernière couleur des tubes dans les
autres tubes avec les contraintes suivantes :
• on ne peut rien verser dans un tube plein ;
• pour verser un tube 1 dans un tube 2, il faut que la dernière couleur du tube 1 soit

la même que celle du tube 2 ou que le tube 2 soit vide. Dans ces deux cas, on retire
la dernière couleur du tube 1 pour qu’elle devienne la dernière couleur du tube 2. On
réitère cela tant que la dernière couleur du tube 1 est la même et que le tube 2 n’est pas
plein.

Le jeu se termine lorsque 3 des 4 tubes sont pleins et que leurs 3 phases sont de même
couleur.
Les figures 2, 3, 4 et 5 ci-après représentent un exemple de partie du jeu Défi Tube.

1
3

tube 1
3
3

tube 2
2
2

tube 3
2
1
1

tube 4
Figure 2. État initial du jeu.

1
1
1

tube 1
3
3
3

tube 2
2
2

tube 3
2

tube 4
Figure 4. On verse le tube 4 dans le tube 1.

1
tube 1

3
3
3

tube 2
2
2

tube 3
2
1
1

tube 4
Figure 3. On verse le tube 1 dans le tube 2.

1
1
1

tube 1
3
3
3

tube 2 tube 3
2
2
2

tube 4
Figure 5. On verse le tube 3 dans le tube 4.

À la figure 5, la partie est terminée.

1) Donner un exemple d’une autre séquence de versements qui aurait permis de terminer
le jeu en partant de la situation de la figure 4.
Solution : Il suffit de verser le tube 4 dans le tube 3 :

1
1
1

tube 1
3
3
3

tube 2
2
2
2

tube 3 tube 4

Devoir surveillé no3 3/6 NSI Tle

Ainsi le déroulement du jeu n’est pas unique.
Partie A : Les tubes
Pour modéliser le jeu Défi Tube, chaque tube sera représenté par une pile finie de taille
maximale 3. Les tubes sont modélisés par des objets de la classe tube dont le code est donné
ci-dessous.

1 class tube:
2 def __init__(self):
3 self.taille = 0
4 self.contenu = [0, 0, 0]
5
6 def est_vide(self):
7 return self.taille == 0
8
9 def empiler(self, couleur):

10 if self.taille < 3:
11 self.contenu[self.taille] = couleur
12 self.taille = self.taille + 1
13
14 def depiler(self):
15 if self.taille > 0:
16 self.taille = self.taille - 1
17 couleur = self.contenu[...........................]
18 self.contenu[self.taille] = 0
19 return ...
20 else:
21 return ...

Chaque instance de la classe tube a deux attributs :
• l’attribut taille représente le nombre d’éléments non nuls dans le tube ;
• l’attribut contenu représente la liste (de taille 3) des éléments du tube. Lorsqu’une phase

n’est pas vide, elle contiendra une couleur 1, 2, ou 3. Lorsqu’une phase est vide, sa valeur
est 0.

Par exemple, le tube ci-contre sera modélisé avec la classe tube par le code :

t = tube()
t.taille = 2
t.contenu = [1, 3, 0] 1

3

Figure 6. tube 1

2) Expliquer ce qu’est la structure de pile en précisant à quoi servent les méthodes empiler
et depiler.
Solution : Une pile sert à stocker des données selon le principe dernier arrivé, premier
sorti. Les méthodes empiler et depiler servent à ajouter et enlever des éléments sur
cette pile.

3) Expliquer les lignes 11 et 12 du code de la classe tube.
Solution : La ligne 11 sert à mettre la couleur au sommet de la pile et la ligne 12 sert à
augmenter la taille de cette pile.

4) Compléter le code de la méthode depiler précédente. Lorsque le tube est vide, la mé-
thode depiler doit renvoyer −1.
Solution :

Devoir surveillé no3 4/6 NSI Tle

def depiler(self):
if self.taille > 0:

self.taille = self.taille - 1
couleur = self.contenu[self.taille]
self.contenu[self.taille] = 0
return couleur

else:
return -1

5) Écrire une méthode est_plein de la classe tube. Cette méthode renvoie True si le tube
est plein et False si le tube n’est pas plein.

def est_plein(self):
return self.taille == 3

6) Écrire une méthode est_homogene de la classe tube qui renvoie True si le tube est plein
et si son contenu est composé de trois fois la même couleur, et qui renvoie False sinon.

def est_homogene(self):
return (self.est_plein()

and self.contenu[0] == self.contenu[1]
and self.contenu[0] == self.contenu[2])

7) Écrire une méthode derniere_couleur de la classe tube qui renvoie le numéro de la
dernière couleur du tube. Si le tube est vide, la méthode renverra la valeur −1.

def derniere_couleur(self):
if self.est_vide():

return -1
else:

return self.contenu[self.taille-1]

Le code incomplet d’une méthode verser de la classe tube est donné ci-dessous :

def verser(self, other):
while

couleur = self.depiler()
other.empiler(couleur)

8) Compléter le code de cette méthode verser afin de verser l’instance self de la classe
tube dans l’instance other. On veillera à vérifier toutes les conditions nécessaires au bon
déroulement de cette opération.

def verser(self, other):
while (not self.est_vide()

and not other.est_plein()
and (other.est_vide()

or self.derniere_couleur() == other.derniere_couleur())):
couleur = self.depiler()
other.empiler(couleur)

Partie B : Le jeu
Pour modéliser le jeu, on appellera état du jeu une liste de 4 tubes. Le code suivant permet
de représenter l’état de la figure 2.

Devoir surveillé no3 5/6 NSI Tle

tube1 = tube()
tube1.contenu = [1, 3, 0]
tube1.taille = 2
tube2 = tube()
tube2.contenu = [3, 3, 0]
tube2.taille = 2
tube3 = tube()
tube3.contenu = [2, 2, 0]
tube3.taille = 2
tube4 = tube()
tube4.contenu = [2, 1, 1]
tube4.taille = 3
etat = [tube1, tube2, tube3, tube4]

9) En utilisant la méthode verser et la variable etat représentant la figure 2, écrire un code
permettant de faire passer la variable etat de la représentation en figure 2 à celle de la
figure 3.
etat[0].verser(etat[1]) # tube1.verser(tube2)

10) Écrire une fonction gagne qui prend comme argument un état et qui renvoie True si la
partie est terminée et False sinon.
def gagne(etat):

nb_tubes_pleins = 0
for t in etat:

if t.est_homogene():
nb_tubes_pleins += 1

return nb_tubes_pleins == 3

Devoir surveillé no3 6/6 NSI Tle

