Lycée Les 3 SOURCEs
NSI T'e

Bourg-Les-Valence
Année 2025-26

Devoir surveillé n°3 — Correction
Nom et prénom :

Exercice 1 : (12pt) Cet exercice porte sur les bases de données relationnelles et les requétes SQL.

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

 construire des requétes d’interrogation a I’aide de SELECT, FROM, WHERE (avec les opérateurs
logiques AND et OR) et JOIN ... ON;

 construire des requétes d’insertion et de mise a jour a I’aide de UPDATE, INSERT et DELETE;

o affiner les recherches a I’aide de DISTINCT et ORDER BY.

La ville de Bois-Plage a décidé d’organiser, pendant un mois de juillet, un tournoi sportif
de volley-ball par équipes de 4. Elle met a disposition des personnes intéressées un site
d’inscription en ligne qui utilise un systeme de gestion de base de données.

Le schéma de la base de données utilisée est donné ci-dessous, en figure 1. Sur ce schéma, les
clés primaires ont été soulignées et les clés étrangeres indiquées par un croisillon (symbole
#).

joueur equipe match
id_joueur: INT id_equipe: INT id_match: INT
nom : TEXT nom : TEXT #eq_1:INT
prenom: TEXT —t #)_1: INT #eq_2:INT
ann_naiss: TEXT —t #)_2: INT #eq_gagnante: INT
commune: TEXT| |—#_3:INT score: TEXT
num_port: TEXT —#j_4:INT

points: INT

Figure 1. Schéma de la base de données

A la cloture des inscriptions, de nombreuses équipes sont inscrites. On donne ci-dessous des
extraits des tables joueur et equipe obtenues a I'issue de la phase d’inscription.

equipe
id_equipe nom j_1|3j_2|3j_3]| j_4 | points
8 Les Mr Freeze 7 12 5 33 0
9 Tagadas Winners | 45 | 23 | 67 | 65 0
10 Volley Warriors | 25 | 27 | 30 | 35 0
11 Les Piafs 37 | 32 | 41 | 28 0
joueur
id_joueur nom prenom | ann_naiss commune num_port
25 Leclerc | Océane 2008 Bois-Plage | 0660358945
26 Renault | Henri 1971 Guilland 0625597427
27 Desousa | Laure 1980 Bois-Plage | 0746881113
28 Hernand | Yves 1986 Lebrundan | 0739401689
29 Giraud | Brigitte 1972 Saint-Adrien | 0651936319
30 Barbier | Laure 1979 Bois-Plage | 0787028125

1) Expliquer, dans les relations précédentes, le role des clés primaires. Solution : Les clés

primaires servent a rendre unique chacune des entrées de chaque table.

2) Expliquer quelle situation ne serait pas possible dans la table match si le champ id_match
n’avait pas été introduit dans cette table. Solution : Sans id_match, il ne serait pas pos-

sible d’avoir deux matchs avec les mémes équipes et le méme score.

1/6

3) Donner le résultat de la requéte suivante en l'appliquant a l'extrait de la table joueur
donné dans I’énoncé.

SELECT prenom FROM joueur WHERE ann_naiss < 1985;

Solution : On va obtenir les prénom des joueurs nés avant 1985. On obtiendra donc
Henri, Laure, Brigitte et Laure.
4) Modifier la requéte précédente afin d’éviter les éventuels doublons.
Solution : SELECT DISTINCT prenom FROM joueur WHERE ann_naiss < 1985;
5) Ecrire une requéte SQL permettant d’obtenir tous les noms, années de naissance et nu-
méros de téléphone portable des personnes qui habitent a Bois-Plage.
Solution : SELECT nom, ann_naiss, num_port FROM joueur WHERE commune = "Bois-Plage";

L'organisateur souhaite obtenir I’identité du premier joueur de I’équipe "les Kangourous".

L’équipe "les Kangourous" n‘apparait pas dans l’extrait.

6) Ecrire une requéte SQL permettant d’obtenir le nom et le prénom du joueur j_1 de
I’équipe "les Kangourous".

SELECT joueur.nom, prenom FROM joueur
JOIN equipe ON equipe.j_l=joueur.id_joueur
WHERE equipe.nom="les Kangourous";

L’équipe “Volley Warriors” a terminé le tournoi avec un total de 5 points.
7) Ecrire une requéte SQL permettant de mettre a jour la table equipe avec le nombre de
points gagnés par I’équipe "Volley Warriors".
Solution : UPDATE equipe SET points=5 WHERE nom="Volley Warriors";
8) Ecrire une requéte SQL permettant de supprimer de la table joueur le joueur ayant pour
identifiant le numéro 35.
Solution : DELETE FROM joueur WHERE id_joueur=35;
A la cloture du tournoi, la table match est totalement complétée. Un extrait de cette table
est donné ci-dessous.

match
id_match | eq_1 | eq_2 | eg_gagnante | score
32 3 8 8 25-20
33 3 9 3 25-15
34 3 10 10 25-7

9) Ecrire une requéte SQL permettant d’obtenir la liste des identifiants de matchs auxquels
a participé I’équipe ayant pour identifiant 12.
SELECT id_match FROM match

WHERE eq_1=12 OR eq_2=12;

10) Ecrire une requéte SQL permettant d’obtenir la liste des identifiants des matchs pour
lesquels le joueur 1 de I’équipe 1 du match vient de la commune de Bois-Plage.
SELECT id_match FROM match

JOIN equipe ON match.eq_l=equipe.id_equipe

JOIN joueur ON joueur.id_joueur=equipe.j_1

WHERE commune="Bois-Plage";

11) Ecrire une requéte SQL permettant d’obtenir la liste, classée par ordre alphabétique, des
noms et prénoms des joueurs ayant gagné au moins un match en tant que joueur 1 de
I’équipe 1 du match.

Devoir surveillé n°3 2/6 NSI Tle

SELECT DISTINCT joueur.nom, prenom FROM joueur
JOIN equipe ON joueur.id_joueur=equipe.j_1
JOIN match ON match.eq_l=equipe.id_equipe
WHERE match.eq_gagnante=match.eq_1

ORDER BY joueur.nom, prenom;

Exercice 2 : (14pt) Cet exercice porte sur les piles, la programmation objet et I'algorithmique.
Défi Tubes est un jeu a un joueur. Le joueur dispose de 4 tubes. Chaque tube peut contenir
de 0 a 3 phases. Chaque phase possede une couleur. Il y a 3 couleurs possibles. On peut
s’imaginer ces phases comme des palets de couleur dans le tube.

Pour modéliser les couleurs, on utilisera les entiers 1, 2 __derniére
et 3. Lorsqu’un tube contient 0 phase, on dit que le tube phasesé: couleur
est vide. Lorsqu’il en a 3, on dit qu’il est plein. Lorsqu’un ~

tube n’est pas vide, sa derniere couleur est la couleur de

sa phase supérieure. Figure 1. Exemple de tube.

Le jeu Défi Tube consiste a verser successivement la derniére couleur des tubes dans les

autres tubes avec les contraintes suivantes:

* on ne peut rien verser dans un tube plein;

e pour verser un tube 1 dans un tube 2, il faut que la derniére couleur du tube 1 soit
la méme que celle du tube 2 ou que le tube 2 soit vide. Dans ces deux cas, on retire
la derniere couleur du tube 1 pour qu’elle devienne la derniere couleur du tube 2. On
réitere cela tant que la derniére couleur du tube 1 est la méme et que le tube 2 n’est pas
plein.

Le jeu se termine lorsque 3 des 4 tubes sont pleins et que leurs 3 phases sont de méme

couleur.

Les figures 2, 3, 4 et 5 ci-apres représentent un exemple de partie du jeu Défi Tube.

H H i i i
i

tube 1 tube 2 tube 3 tube 4 tube 1 tube 2 tube 3 tube 4
Figure 2. Etat initial du jeu. Figure 4. On verse le tube 4 dans le tube 1.
| |
|
tube 1 tube 2 tube 3 tube 4 tube 1 tube 2 tube 3 tube 4

Figure 3. On verse le tube 1 dans le tube 2. | Figure 5. On verse le tube 3 dans le tube 4.
A la figure 5, la partie est terminée.
1) Donner un exemple d’une autre séquence de versements qui aurait permis de terminer

le jeu en partant de la situation de la figure 4.
Solution : Il suffit de verser le tube 4 dans le tube 3:

tube 1 tube 2 tube 3 tube 4

Devoir surveillé n°3 3/6 NSI Tle

Ainsi le déroulement du jeu n’est pas unique.

Partie A: Les tubes

Pour modéliser le jeu Défi Tube, chaque tube sera représenté par une pile finie de taille
maximale 3. Les tubes sont modélisés par des objets de la classe tube dont le code est donné
ci-dessous.

1 |class tube:

2 def __init__(self):

3 self.taille = 0

4 self.contenu = [0, 0, 0]

5

6 def est_vide(self):

7 return self.taille ==

8

9 def empiler(self, couleur):

10 if self.taille < 3:

11 self.contenu[self.taille] = couleur
12 self.taille = self.taille + 1
13

14 def depiler(self):

15 if self.taille > 0:

16 self.taille = self.taille - 1
17 couleur = self.contenul.......covviiirinrnnennennn]
18 self.contenu[self.taille] = 0
19 return ...

20 else:

21 return ...

Chaque instance de la classe tube a deux attributs:
* l'attribut taille représente le nombre d’éléments non nuls dans le tube;

 l'attribut contenu représente la liste (de taille 3) des éléments du tube. Lorsqu’une phase
n’est pas vide, elle contiendra une couleur 1, 2, ou 3. Lorsqu’une phase est vide, sa valeur
est 0.

Par exemple, le tube ci-contre sera modélisé avec la classe tube par le code:

t = tube() B
t.taille = 2
t.contenu = [1, 3, 0]

Figure 6. tube 1

2) Expliquer ce qu’est la structure de pile en précisant a quoi servent les méthodes empiler
et depiler.
Solution : Une pile sert a stocker des données selon le principe dernier arrivé, premier
sorti. Les méthodes empiler et depiler servent a ajouter et enlever des éléments sur
cette pile.

3) Expliquer les lignes 11 et 12 du code de la classe tube.
Solution : La ligne 11 sert a mettre la couleur au sommet de la pile et la ligne 12 sert a
augmenter la taille de cette pile.

4) Compléter le code de la méthode depiler précédente. Lorsque le tube est vide, la mé-
thode depiler doit renvoyer —1.
Solution :

Devoir surveillé n°3 4/6 NSI Tle

def depiler(self):

if self.taille > 0:
self.taille = self.taille - 1
couleur = self.contenu[self.taille]
self.contenu[self.taille] = 0
return couleur

else:
return -1

5) Ecrire une méthode est_plein de la classe tube. Cette méthode renvoie True si le tube
est plein et False si le tube n’est pas plein.

def est_plein(self):
return self.taille ==

6) Ecrire une méthode est_homogene de la classe tube qui renvoie True si le tube est plein
et si son contenu est composé de trois fois la méme couleur, et qui renvoie False sinon.

def est_homogene(self):
return (self.est_plein()
and self.contenu[®] == self.contenu[1]
and self.contenu[®] == self.contenu[2])

7) Ecrire une méthode derniere_couleur de la classe tube qui renvoie le numéro de la
derniere couleur du tube. Si le tube est vide, la méthode renverra la valeur —1.
def derniere_couleur(self):
if self.est_vide():
return -1
else:
return self.contenu[self.taille-1]

Le code incomplet d’'une méthode verser de la classe tube est donné ci-dessous:

def verser(self, other):
while

couleur = self.depiler()
other.empiler(couleur)

8) Compléter le code de cette méthode verser afin de verser 'instance self de la classe
tube dans l'instance other. On veillera a vérifier toutes les conditions nécessaires au bon
déroulement de cette opération.

def verser(self, other):
while (not self.est_vide()
and not other.est_plein()
and (other.est_vide()
or self.derniere_couleur() == other.derniere_couleur())):
couleur = self.depiler()
other.empiler(couleur)

Partie B: Le jeu
Pour modéliser le jeu, on appellera état du jeu une liste de 4 tubes. Le code suivant permet
de représenter I’état de la figure 2.

Devoir surveillé n°3 5/6 NSI Tle

tubel = tube()
tubel.contenu = [1, 3, 0]
tubel.taille = 2

tube2 = tube()
tube2.contenu = [3, 3, 0]
tube2.taille = 2

tube3 = tube()
tube3.contenu = [2, 2, 0]
tube3.taille = 2

tubed = tube()
tube4.contenu = [2, 1, 1]
tube4.taille = 3

etat = [tubel, tube2, tube3, tube4]

9) En utilisant la méthode verser et la variable etat représentant la figure 2, écrire un code
permettant de faire passer la variable etat de la représentation en figure 2 a celle de la
figure 3.

etat[0].verser(etat[1]) # tubel.verser(tube2)

10) Ecrire une fonction gagne qui prend comme argument un état et qui renvoie True si la
partie est terminée et False sinon.
def gagne(etat):

nb_tubes_pleins = 0

for t in etat:

if t.est_homogene():
nb_tubes_pleins += 1
return nb_tubes_pleins ==

Devoir surveillé n°3 6/6 NSI Tle

