
Lycée Les 3 Sources Bourg-Lès-Valence
NSI Tle Année 2025-26

Autotest no5

Exercice 1 : (11pt) Cet exercice traite du thème architecture matérielle, et plus particulièrement
des processus et leur ordonnancement.

1) Avec la commande ps -aef on obtient l’affichage suivant :

PID PPID C STIME TTY TIME CMD
8600 2 0 17:38 ? 00:00:00 [kworker/u2:0-fl]
8859 2 0 17:40 ? 00:00:00 [kworker/0:1-eve]
8866 2 0 17:40 ? 00:00:00 [kworker/0:10-ev]
8867 2 0 17:40 ? 00:00:00 [kworker/0:11-ev]
8887 6217 0 17:40 pts/0 00:00:00 bash
9562 2 0 17:45 ? 00:00:00 [kworker/u2:1-ev]
9594 2 0 17:45 ? 00:00:00 [kworker/0:0-eve]
9617 8887 21 17:46 pts/0 00:00:06 /usr/bin/firefox/firefox
9657 9617 17 17:46 pts/0 00:00:04 /usr/bin/firefox/firefox -contentproc -childID
9697 9617 4 17:46 pts/0 00:00:01 /usr/bin/firefox/firefox -contentproc -childID
9750 9617 3 17:46 pts/0 00:00:00 /usr/bin/firefox/firefox -contentproc -childID
9794 9617 11 17:46 pts/0 00:00:00 /usr/bin/firefox/firefox -contentproc -childID
9795 9794 0 17:46 pts/0 00:00:00 /usr/bin/firefox/firefox

9802 7441 0 17:46 pts/2 00:00:00 ps -aef

On rappelle que :
• PID : Identifiant d’un processus (Process IDentification)
• PPID : Identifiant du processus parent d’un processus (Parent Process IDentification)

a) Donner sous forme d’un arbre de PID la hiérarchie des processus liés à firefox.
b) Indiquer la commande qui correspond au processus parent du premier processus de
firefox. .

c) La commande kill permet de supprimer un processus à l’aide de son PID (par
exemple kill 8600). Lorsqu’on supprime un processus, tous les sous-processus sont
également supprimés.
Indiquer la commande qui permettra de supprimer tous les processus liés à firefox
et uniquement ces processus. .

2) a) Compléter le schéma ci-dessous avec les termes suivants concernant l’ordonnance-
ment des processus : Élu, En attente, Prêt, Blocage, Déblocage, Mise en exécution.

Nouveau

...........

...........

...........

......................

Terminé

On donne dans le tableau ci-dessous quatre processus qui doivent être exécutés par un pro-
cesseur. Chaque processus a un instant d’arrivée et une durée, donnés en nombre de cycles
du processeur.

1/4

Les processus sont placés dans une file d’at-
tente en fonction de leur instant d’arrivée.
On se propose d’ordonnancer ces quatre pro-
cessus avec la méthode suivante :

Processus P1 P2 P3 P4
Instant d’arrivée 0 2 3 7

Durée 8 6 2 2

• Parmi les processus présents en liste d’attente, l’ordonnanceur choisit celui dont la durée
restante est la plus courte ;

• Le processeur exécute un cycle de ce processus puis l’ordonnanceur désigne de nouveau
le processus dont la durée restante est la plus courte ;

• En cas d’égalité de temps restant entre plusieurs processus, celui choisi sera celui dont
l’instant d’arrivée est le plus ancien ;

• Tout ceci jusqu’à épuisement des processus en liste d’attente.

On donne en exemple ci-dessous, l’ordonnancement des quatre processus de l’exemple pré-
cédent suivant l’algorithme ci-dessus.

0 2 4 6 8 10 12 14 16 18 temps
en nombre de cycles

P1 P1 P1 P3 P3 P1 P1 P4 P4 P1 P1 P1 P2 P2 P2 P2 P2 P2

On définit le temps d’exécution d’un processus comme la différence entre son instant de
terminaison et son instant d’arrivée.

b) Calculer la moyenne des temps d’exécution des quatre processus.
On se propose de modifier l’ordonnancement des processus. L’algorithme reste identique à
celui présenté précédemment mais au lieu d’exécuter un seul cycle, le processeur exécutera
à chaque fois deux cycles du processus choisi. En cas d’égalité de temps restant, l’ordonnan-
ceur départagera toujours en fonction de l’instant d’arrivée.

c) Compléter le schéma ci-dessous donnant le nouvel ordonnancement des quatre pro-
cessus.

0 2 4 6 8 10 12 14 16 18 temps
en nombre de cycles

P1 P1

d) Calculer la nouvelle moyenne des temps d’exécution des quatre processus et indiquer
si cet ordonnancement est plus performant que le précédent.

On se propose de programmer l’algorithme du premier ordonnanceur. Chaque processus
sera représenté par une liste comportant autant d’éléments que de durées (en nombre de
cycles). Pour simuler la date de création de chaque processus, on ajoutera en fin de liste
de chaque processus autant de chaînes de caractères vides que la valeur de leur date de
création.

p1 = ['1.8', '1.7', '1.6', '1.5', '1.4', '1.3', '1.2', '1.1']
p2 = ['2.6', '2.5', '2.4', '2.3', '2.2', '2.1', '', '']
p3 = ['3.2', '3.1', '', '', '']
p4 = ['4.2', '4.1', '', '', '', '', '', '', '']
liste_proc = [p1, p2, p3, p4]

Une fonction scrutation (non étudiée) est chargée de parcourir la liste liste_proc de tous
les processus et de renvoyer la liste d’attente des processus en fonction de leur arrivée. À
chaque exécution de scrutation, les processus présents (sans chaînes de caractères vides en
fin de liste) sont ajoutés à la liste d’attente. La fonction supprime pour les autres un élément

Autotest no5 2/4 NSI Tle

de chaîne de caractères vides. Les processus qui sont terminés ne sont pas remis dans la liste
d’attente.
3) a) La fonction choix_processus est chargée de sélectionner le processus dont le temps

restant d’exécution est le plus court parmi les processus en liste d’attente.
Compléter la fonction choix_processus ci-dessous.

def choix_processus(liste_attente):
"""Renvoie l'indice du processus le plus court parmi
ceux présents en liste d'attente liste_attente"""
if liste_attente != []:

mini = len(liste_attente[0])
indice = 0
Plusieurs lignes à rajouter
return indice

Lors de l’éxecution d’un processus,
on supprime son dernier élément,
avec la méthode pop.

b) Compléter la fonction
ordonnancement pour réali-
ser le fonctionnement désiré.

>>> proc = ['1.8', '1.7', '1.6', '1.5', '1.4']
>>> proc.pop()
'1.4'
>>> proc
['1.8', '1.7', '1.6', '1.5']

def ordonancement(liste_proc):
"""Exécute l'algorithme d'ordonnancement liste_proc -- liste des processus
Renvoie la liste d'exécution des processus"""
execution = []
attente = scrutation(liste_proc, [])
while attente != []:

indice = choix_processus(attente)
Plusieurs lignes à rajouter
attente = scrutation(liste_proc, attente)

return execution

Exercice 2 : Cet exercice porte sur la gestion des processus et des ressources par un système
d’exploitation.
Les parties A et B peuvent être traitées indépendamment.
Partie A : Ordonnancement des processus
Dans le laboratoire d’analyse médicale d’un hôpital, plusieurs processus peuvent demander
l’allocation du processeur simultanément.
Le tableau ci-dessous donne les demandes d’exécution de quatre processus et indique :
• le temps d’exécution du processus (en unité de temps) ;
• l’instant d’arrivée du processus sur le processeur (en unité de temps) ;
• le numéro de priorité du processus (classé de 1 à 10).
Plus la priorité est grande plus le numéro de priorité est petit.
Ainsi le processus P3, du tableau ci-dessous, est plus prioritaire que le processus P1.
L’ordonnancement est de type préemptif, ce qui signifie qu’à chaque unité de temps, le
processeur choisit d’exécuter le processus ayant le plus petit numéro de priorité (un seul
processus à la fois). Ceci peut provoquer la suspension d’un autre processus qui reprendra
lorsqu’il deviendra le plus prioritaire dans la file d’attente.

Autotest no5 3/4 NSI Tle

Processus Temps d’exécution Instant d’arrivée Numéro de priorité
P1 3 0 4
P2 4 2 2
P3 3 3 1
P4 4 5 3

1) Compléter le diagramme ci-dessous et indiquer dans chacune des cases le processus exé-
cuté par le processeur entre deux unités de temps (il peut y avoir des cases vides).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P1

2) Compléter les temps de séjour ainsi que les temps d’attente de chacun des processus
(toujours en unités de temps).

Temps de séjour = instant de terminaison− instant d’arrivée
Temps d’attente = temps de séjour− temps d’exécution

Processus Temps Instant Numéro Temps de séjour Temps d’attente
d’exécution d’arrivée de priorité

P1 3 0 4 14− 0 = 14 14− 3 = 11
P2 4 2 2
P3 3 3 1
P4 4 5 3

3) À quelles conditions le temps d’attente d’un processus peut-il être nul?

Partie B : Processus et ressources
Dans ce laboratoire d’analyse médicale de l’hôpital, le laborantin en charge du traitement
des différents prélèvements (sanguins, urinaires et biopsiques) utilise simultanément quatre
logiciels :
• Logiciel d’analyse d’échantillons (connecté à l’analyseur)
• Logiciel d’accès à la base de données des patients (SGBD)
• Traitement de texte
• Tableur
Le tableau ci-dessous donne l’état à un instant donné des différents processus (instances des
programmes) qui peuvent soit mobiliser (M) des données (D1, D2, D3, D4 et D5), soit être
en attente des données (A) ou ne pas les solliciter (-).
Une donnée ne peut être mobilisée que par un seul processus à la fois. Si un autre processus
demande une donnée déjà mobilisée, il passe en attente.
Exemple : le SGBD mobilise la donnée D4 et est en attente de la donnée D5

D1 D2 D3 D4 D5
Analyseur échantillon M - - A -
SGBD - - - M A
Traitement de texte - M A - -
Tableur A - M - M

1) À partir du tableau ci-dessus, démontrer que, à cet instant, les processus s’attendent
mutuellement.

2) Comment s’appelle cette situation? .
3) On suppose que l’analyseur d’échantillon libère la ressource D1. Donner un ordre pos-

sible d’exécution des processus.

Autotest no5 4/4 NSI Tle

