
Lycée Les 3 Sources Bourg-Lès-Valence
NSI Tle Année 2025-26

Autotest no4 – Correction

Exercice 1 : Cet exercice porte sur la programmation Python, la programmation orientée objet,
les bases de données relationnelles et les requêtes SQL.
Partie A
Une entreprise, présente sur différents sites en France, attribue à chacun de ses employés un
numéro de badge unique.
Dans le tableau ci-dessous, on donne le numéro de badge, le nom, le prénom et les années
de naissance et d’entrée dans l’entreprise de quelques salariés.

numéro badge nom prénom année de naissance année d’entrée
112 LESIEUR Isabelle 1982 2005

2122 VASSEUR Adrien 1962 1980
135 HADJI Hakim 1992 2015

Pour chaque personne,
on souhaite stocker
les informations dans
un objet de la classe
Personne définie
ci-dessous :

class Personne():
def __init__(self, num, n, p, a_naiss, a_entree):

self.num_badge = num
self.nom = n
self.prenom = p
self.annee_naissance = a_naiss
self.annee_entree = a_entree

1) Écrire à l’aide du tableau précédent, l’instruction permettant de créer l’objet personneA
de la première personne du tableau : LESIEUR Isabelle.
Solution : personneA = Personne(112, 'LESIEUR', 'Isabelle', 1982, 2005)

2) Donner l’instruction permettant d’obtenir le numéro de badge de l’objet personneA ins-
tancié à la question précédente.
Solution : personneA.num_badge

On souhaite ajouter une méthode annee_anciennete à la classe Personne qui donne le
nombre d’années d’ancienneté d’une personne au sein de l’entreprise. Par exemple : Ma-
dame LESIEUR Isabelle a une ancienneté dans l’entreprise de 19 ans en considérant que
nous sommes en 2024.

3) Compléter le code suivant de la mé-
thode annee_anciennete :

def annee_anciennete(self):
return 2024 - self.annee_entree

On considère la classe Personnel qui modélise la liste du
personnel d’une entreprise et dont le début de l’implémen-
tation est la suivante :

class Personnel:
def __init__(self):

self.liste = []

4) Écrire la méthode ajouter permettant d’ajouter un objet de type Personne à la liste du
personnel de l’entreprise de la classe Personnel.

def ajouter(self, p):
self.liste.append(p)

5) Écrire la méthode effectif de la classe Personnel. Cette méthode devra renvoyer le
nombre de personnes présentes dans l’entreprise.

def effectif(self):
return len(self.liste)

1/6

6) Compléter la méthode donne_nom de la
classe Personnel. Cette méthode prend en
paramètre le numéro de badge d’une per-
sonne et renvoie le nom de la personne
correspondant à ce badge si elle existe, ou
None sinon.

def donne_nom(self, num):
for elt in self.liste:

if num == elt.num_badge:
return elt.nom

return None

7) Lors de la célèbre cérémonie des vœux, l’entreprise souhaite mettre à l’honneur les per-
sonnes ayant exactement 10 ans d’ancienneté dans l’entreprise. Écrire une méthode de la
classe Personnel nb_personne_honneur qui prend en paramètre l’année de la cérémonie
et qui retourne le nombre de personne(s) à mettre à l’honneur.

def nb_personne_honneur(self, annee):
n = 0
for elt in self.liste:

if annee - elf.annee_entree == 10:
n = n + 1

return n

8) Écrire une méthode plus_anciens de la classe Personnel qui retourne la liste des numé-
ros de badge des personnes ayant la plus grande ancienneté dans l’entreprise.

def plus_anciens(self):
res = []
maxi = 0
for elt in self.liste:

anc = elt.annee_anciennete()
if anc > maxi:

res = [elt.num_badge]
maxi = anc

elif anc == maxi:
res.append(elt.num_badge)

return res
Partie B
On utilise maintenant une base de données relationnelle. La table Personnel dont un ex-
trait est donné ci-dessous contient toutes les données importantes sur le personnel de l’en-
treprise. L’attribut num_centre désigne le numéro du centre dans lequel travaille une per-
sonne. Table Personnel

num_badge nom prenom num_centre annee_naiss annee_debut
112 LESIEUR Isabelle 1 1982 2005

2122 VASSEUR Adrien 2 1962 1980
135 HADJI Hakim 1 1992 2015

L’attribut num_badge est la clé primaire pour la table
Personnel.
9) Décrire par une phrase en français le résultat de la re-

quête SQL ci-contre.

SELECT nom, prenom
FROM Personnel
WHERE num_centre = 2;

Solution : On obtient le nom et le prénom de tous les personnels du centre numéro 2.

10) Monsieur HADJI Hakim vient d’obtenir une mutation pour le centre numéro 3. Donner
la requête permettant de modifier son numéro de centre sachant que son numéro de
badge est 135.
UPDATE Personnel SET num_centre = 3 WHERE num_badge = 135;

Autotest no4 2/6 NSI Tle

On souhaite proposer plus d’informations sur les différents centres de l’entreprise. Pour
cela, on crée une deuxième table Centre avec les attributs suivants :

• num de type INT ;
• nom de type TEXT ;
• num_tel de type TEXT ;
• ville de type TEXT.

Table Centre
num nom num_tel ville

1 Normandie 0450646859 Caen
2 PACA 0450646859 Marseille

11) Expliquer l’intérêt d’utiliser deux tables (Personnel et Centre) au lieu de regrouper
toutes les informations dans une seule table.
Solution : Cela permet d’éviter la redondance des données. Par exemple, si on change le
numéro de téléphone d’un centre, on n’a pas besoin de le faire pour tous les employés de
ce centre. Il suffit de changer le numéro dans la table Centre.

12) Expliquer comment les tables Centre et Personnel sont mises en relation.
Solution : La clé primaire num de Centre est aussi la clé étrangère num_centre de Personnel.
Cela permet de relier les deux tables.

13) Écrire une requête permettant d’avoir les noms des personnes travaillant dans le centre
de Lille et ayant été embauchées entre 2015 (inclus) et 2020 (inclus).
SELECT Personnel.nom FROM Personnel
JOIN Centre ON Centre.num = Personnel.num_centre
WHERE ville = 'Lille' AND 2015 <= annee_debut <= 2020;

Le centre de Normandie vient d’être fermé, mais les personnes de ce centre n’ont pas encore
été affectées dans leur nouveau centre. On souhaite mettre à jour la table Centre en premier
à l’aide de la requête suivante.

14) Expliquer pourquoi cette requête a renvoyé une erreur.

DELETE ∗
FROM Centre
WHERE nom = 'Normandie';

Solution : Puisque la clé primaire de Centre est aussi une clé étrangère de Personnel, on
ne peut pas supprimer d’éléments de Centre tant que toutes ses mentions dans Personnel
n’ont pas été supprimées.

Exercice 2 : Cet exercice porte sur les arbres binaires de recherche, la POO et la récursivité.
Nous disposons d’une classe ABR pour les arbres binaires de recherche dont les clés sont des
entiers :

class ABR():
def __init__(self) :

Initialise une instance d'ABR vide.

def cle(self):
Renvoie la clé de la racine de l'instance d'ABR.

def sad(self):
Renvoie le sous-arbre droit de l'instance d'ABR.

def sag(self):
Renvoie le sous-arbre gauche de l'instance d'ABR.

def est_vide(self):
Renvoie True si l'instance d'ABR est vide et False sinon.

Autotest no4 3/6 NSI Tle

def inserer(self, cle_a_inserer):
Insère cle_a_inserer à sa place dans l'instance d'ABR.

Considérons ci-dessous trois arbres binaires de recherche :
Arbre no1 Arbre no2 Arbre no3

0

6

5

4

3

2

1

0

1

2

6

5

4

3

0 2

1

4 6

5

3

Dans tout l’exercice, nous ferons référence à ces trois arbres binaires de recherche et utilise-
rons la classe ABR et ses méthodes.
Partie A

1) Un arbre est une structure de données hiérarchique dont chaque élément est un nœud.
Compléter le texte ci-dessous en choisissant des expressions parmi
au maximum, au minimum, exactement, feuille, racine, sous-arbre gauche et sous-arbre
droit :
• Le nœud initial est appelé racine
• Un nœud qui n’a pas de fils est appelé feuille
• Un arbre binaire est un arbre dans lequel chaque nœud a exactement deux fils.
• Un arbre binaire de recherche est un arbre binaire dans lequel tout nœud est associé à

une clé qui est :
• supérieure à chaque clé de tous les nœuds de son sous-arbre gauche
• inférieure à chaque clé de tous les nœuds de son sous-arbre droit

2) Donner dans l’ordre les clés obtenues lors du parcours préfixe de l’arbre no1.
Solution : 1, 0, 2, 3, 4, 5, 6.

3) Donner dans l’ordre, les clés obtenues lors du parcours suffixe, également appelé post-
fixe, de l’arbre no2.
Solution : 0, 1, 2, 6, 5, 4, 3.

4) Donner dans l’ordre, les clés obtenues lors du parcours infixe de l’arbre no3.
Solution : 0, 1, 2, 3, 4, 5, 6.

5) Compléter les instructions ci-dessous afin de définir puis de construire, en y insérant
les clés dans un ordre correct (il y a plusieurs possibilités, on en demande une) , les
trois instances de la classe ABR qui correspondent aux trois arbres binaires de recherche
représentés plus haut.
arbre_no1 = ABR()
arbre_no2 = ABR()
arbre_no3 = ABR()
for cle_a_inserer in [1, 0, 2, 3, 4, 5, 6]:

arbre_no1.inserer(cle_a_inserer)
for cle_a_inserer in [3, 2, 4, 1, 5, 0, 6]:

arbre_no2.inserer(cle_a_inserer)
for cle_a_inserer in [3, 1, 5, 0, 2, 4, 5]:

arbre_no3.inserer(cle_a_inserer)

Autotest no4 4/6 NSI Tle

6) Voici le code de la méthode hauteur de la classe ABR qui renvoie la hauteur d’une instance
d’ABR :

def hauteur(self):
if self.est_vide() :

return -1
else :

return 1 + max(self.sag().hauteur(), self.sad().hauteur())

Donner, en vous basant sur cette fonction, la hauteur des trois instances arbre_no1,
arbre_no2 et arbre_no3 de la classe ABR définies plus haut et qui correspondent aux
trois arbres représentés plus haut.
Solution : La hauteur de arbre_no1 est de 5, celle de arbre_no2 est de 3 et celle de
arbre_no3 est de 2.

7) Compléter le code de la
méthode est_presente
ci-contre qui renvoie True
si la clé cle_a_rechercher
est présente dans l’instance
d’ABR et False sinon :

8) Expliquer quelle instruction,
parmi les trois ci-dessous,
nécessitera le moins d’appels
récursifs avant de renvoyer
son résultat :

def est_presente(self, cle_a_rechercher):
if self.est_vide() :

return False
elif cle_a_rechercher == self.cle() :

return True
elif cle_a_rechercher < self.cle() :

return self.sag().est_presente(cle_a_rechercher)
else :

return self.sad().est_presente(cle_a_rechercher)

• arbre_no1.est_presente(7)
• arbre_no2.est_presente(7) • arbre_no3.est_presente(7)

Solution : Puisque 7 va s’insérer à droite de 6, c’est dans l’arbre no3 qu’il y aura le moins
d’appels récursifs puisque c’est l’arbre où il est le plus proche de la racine.

Partie B
9) On rappelle que la fonction abs(x) renvoie la valeur

absolue de x. Par exemple :

>>> abs(3)
3

>>> abs(-2)
2

On donne la méthode est_partiellement_equilibre(self) de la classe ABR. Cette mé-
thode renvoie True si l’instance de la classe ABR est l’implémentation d’un arbre partiel-
lement équilibré et False sinon :

def est_partiellement_equilibre(self) :
if self.est_vide() :

return True
return abs(self.sag().hauteur() - self.sad().hauteur()) <= 1

D’après cette fonction, expliquer ce qu’on appelle ici un arbre partiellement équilibré.
Solution : Un arbre est partiellement équilibré s’il est vide ou si la différence entre la
hauteur de son sous-arbre gauche et celle de son sous-arbre droit est au plus de 1.

Un arbre binaire est équilibré s’il est partiellement équilibré et si ses deux sous- arbres, droit
et gauche, sont eux-mêmes équilibrés. Un arbre vide est considéré comme équilibré.

10) Justifier que, parmi les trois arbres définis plus haut, deux sont partiellement équilibrés.

Solution : Dans l’arbre no1, la différence de hauteur entre les deux sous-arbres est de 4,
pour l’arbre no2, c’est 0 et pour l’arbre no3 c’est également 0. Les arbres no2 et no3 sont
donc partiellement équilibrés.

Autotest no4 5/6 NSI Tle

11) Justifier que, parmi les trois arbres définis plus haut, un seul est équilibré.
Solution : Seul l’arbre no3 est équilibré puisque dans l’arbre no2, les sous arbres gauches
et droites ne sont pas partiellements équilibrés.

12) Définir et coder la méthode récursive est_equilibre de la classe ABR qui renvoie True si
l’instance de la classe ABR est l’implémentation d’un arbre équilibré et False sinon.

def est_equilibre(self):
if self.est_vide() :

return True
elif self.est_partiellement_equilibre():

return self.sag().est_equilibre() and self.sad().est_equilibre()
else:

return False

Autotest no4 6/6 NSI Tle

